

Westinghouse Electric Company Nuclear Fuel Columbia Fuel Fabrication Facility 5801 Bluff Road Hopkins, South Carolina 29061 USA

SCDHEC, BLWM Kim Kuhn 2600 Bull Street Columbia, SC 29201 Direct tel: 803.647.1920 Direct fax: 803.695.3964 e-mail: joynerdp@westinghouse.com Your ref: Our ref: LTR-RAC-21-56

August 11, 2021

Subject: July 2021 CA Progress Report

Ms. Kuhn:

In accordance with Item 19 of Consent Agreement (CA) 19-02-HW, this progress report is being submitted to you, including the following requested information:

- (a) a brief description of the actions which Westinghouse has taken toward achieving compliance with the Consent Agreement during the previous month;
- (b) results of sampling and tests, in tabular summary format received by Westinghouse during the reporting period;
- (c) a brief description of all actions which are scheduled for the next month to achieve compliance with the Consent Agreement, and other information relating to the progress of the work as deemed necessary or requested by the Department; and
- (d) information regarding the percentage of work completed and any delays encountered or anticipated that may affect the approved schedule for implementation of the terms of the Consent Agreement, and a description of efforts made to mitigate delays or avoid anticipated delays.

In response to the above requirements, the following is being reported to the Department since the last progress report submitted on **July 13, 2021**. The following progress report is for work occurring from **July 1- 31, 2021**:

(a) Actions during the previous month:
 Westinghouse began implementation of the Final Remedial Investigation (RI) Work Plan on 6/10/19. To comply with Item 4 of the CA, the following actions were completed this month.

- Completed the following activities to support the **Southern Storage Area (SSA)** Operable Unit (OU) Work Plan:
 - Conducted soil sampling in the former footprint of 5 sheds (S-22 through S-26).
- Completed the following to support the **Phase II RI** Work Plan:
 - Conducted underground utility surveys in the monitoring well and piezometer installation areas.
 - Installed new groundwater monitoring wells W-113 through W-126.
 - Properly abandoned existing monitoring well W-4 and installed new well W-4R.
 - Installed piezometer, PZ-1 adjacent to W-96.
 - Developed the newly installed monitoring wells and began groundwater sampling.
 - Installed five additional pressure transducers in W-4R, W-124, W-125, W-126, and PZ-1.
 - Submitted a plan to conduct a Cultural Resources Survey of Westinghouse property to the State Historic Preservation Officer on July 9.
- Completed the following to support East Lagoon Closure Activities:
 - Hosted a site visit with DHEC on July 19 to observe East Lagoon closure activities.
 - Initiated backfilling and compaction of clean restoration soil into the former East Lagoon footprint.
 - East Lagoon Metrics:
 - Sludge waste shipments = 100% complete (17/17 Rail Shipments).
 - Soil and liner shipments = 50% complete (4/8 Rail Shipments).
 - Restoration backfill = 74% complete (3017/4100 yd³).

(b) Results of sampling and tests:

• Soil Sampling Results Underneath East Lagoon Concrete Sump

On June 28, 2021 a soil sample was collected underneath the concrete sump that was removed from the northwest corner (plan view) of the East Lagoon. The results are included as **Attachment A** of this monthly report.

• Technical Basis Document: Sediment Sampling and Sediment Transect Interim Evaluation

The Technical Basis Document (TBD) included as **Attachment B** provides an interim evaluation of the sediment data collected under the RI. This assessment will be included as part of the Final Remedial Investigation report that WCFFF will issue once the remaining scope of RI fieldwork is complete. Remedial alternatives will be evaluated in the Feasibility Study, which is the next step after submittal of the RI Report.

• Sanitary Lagoon Sludge Sampling Results

Sludge samples were collected from the Sanitary Lagoon in 25 locations as identified in the approved Sanitary Lagoon Sludge Characterization Work Plan (LTR-RAC-21-12 dated January 28, 2021). Three additional samples were collected at the request of the Department (approval letter dated May 28, 2021), which included an additional sampling point in grid one near the input pipe (SLS-B1) and two duplicate samples. The two duplicate samples were

collected from sample locations within the grid where the extensive sample analysis was being completed. The duplicates were labeled as follows for analysis by the laboratory:

- SLS-B2: collected as the blind field duplicate for SLS-1.
- SLS-B3: collected as the blind field duplicate for SLS-19.

The sampling results were tabulated and are included as **Attachment C** along with a graphic to illustrate the location of each sampling point. The radionuclide sum of fractions was calculated and is also included in **Attachment C**.

• Grain Size Analysis

The Nuclear Regulatory Commission requested soil property data on the surface and shallow subsurface (up to 5 feet below land surface) soils in the developed site area, undeveloped area above the bluff, and the floodplain. Soil samples were collected at eight locations within these areas, with some locations being sampled at multiple depths. The samples were submitted to a laboratory for grain size analyses with hydrometer to assess the percentage of sand, silt, and clay within each sample. The results of the grain size analysis as well as a map identifying the sample locations are included as **Attachment D**.

(c) Brief description of all actions which are scheduled for the next month:

In accordance with **Item 4** of the CA, Westinghouse will continue to implement the Work Plan to include the following actions:

- Submit soil sampling results from the former footprint of 5 sheds (S-22 through S-26).
- Complete the remainder of Phase II groundwater sampling.
- Conduct slug testing.
- Survey the following locations:
 - Resurvey the Entrance and Upper 2 staff gages, whose elevations were not able to be surveyed to the desired accuracy during the April 2021 survey campaign (tree canopies were obstructing the instrument's ability to view and connect to satellites);
 - Chlorinated volatile organics soil sampling locations SS-18 through SS-29;
 - Groundwater screening borings installed after the April 2021 survey campaign (L-59 through L-62;
 - Top of casing of the new monitoring wells, piezometer and associated ground surfaces;
 - Tops of both the Lower Sunset Lake spillway and the spillway at the western end of the canal; and
 - Deeply incised portions of the site ditches.
- Review Phase II analytical results and prepare for the September meetings with third party technical consultants and DHEC.
- Begin preparations to submit the annual Groundwater Monitoring Report to DHEC on or before September 28, 2021 in accordance with NPDES Permit SC00001848.
- Cultural Resources Survey of Westinghouse property.
- (d) Percentage of work completed and any delays encountered or anticipated:
 - 85% of Phase II field work scope completed.
 - Currently there are no anticipated delays.

Respectfully,

Ma

Diana P. Joyner Principal Environmental Engineer Westinghouse Electric Company, CFFF 803.497.7062 (m)

cc: N. Parr, Environmental Manager J. Ferguson, EH&S Manager J. Grant, AECOM Project Manager ENOVIA Records

Attachment A:	Soil Sampling Results Underneath East Lagoon Concrete Sump
Attachment B:	Technical Basis Document: Sediment Sampling and Sediment Transect Interim
	Evaluation
Attachment C:	Sanitary Lagoon Sludge Sampling Results
Attachment D:	Grain Size Analysis for Site Soils

Attachment A

Soil Sampling Results Underneath East Lagoon Concrete Sump

Attachment A

Soil S	ampling	Results	Underneath	East	Lagoon	Concrete	Sump
--------	---------	---------	------------	------	--------	----------	------

Samplo ID		Analyte (pCi/g)										Analyte (pCi/g)								
Sample ID	U-234 DL	U-234	U-235 DL	U-235	U-238	Sum U	Tc-99 DL	Tc-99	Resid.	Ind.										
EL-SUMP-4.5'	= 0.216	19.8	= 0.134	0.990	4.46	25.25	= 0.602	0.170	1.97	0.06										

Residential Limits in Soil (per RA-433)									
U234	13 pCi/g								
U235	8 pCi/g								
U238	14 pCi/g								
Tc-99	19 pCi/g								
	exceeds screening value or SOF								

a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

July 07, 2021

Ms. Cynthia Teague Westinghouse Electric Company, LLC PO Drawer R Columbia, South Carolina 29205

Re: East Lagoon Remediation Project Work Order: 548612

Dear Ms. Teague:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on June 30, 2021. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4523.

Sincerely,

Min Ame

Nina Gampe for Samuel Hogan Project Manager

Purchase Order: 4500822910 Line 1 Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

WNUC010 Westinghouse Electric Company PO (4500822910)

Client SDG: 548612 GEL Work Order: 548612

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Samuel Hogan.

Min Ange

Reviewed by

GEL LABORATORIES LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Westingho LLC PO Drawe	ouse Electric C er R	ompany,										
	Columbia	, South Carolin	a 29205					R	Report Date:	J	July 7,	2021	
Contact:	Ms. Cynth	nia Teague											
Project:	East Lago	on Remediation	n Project										
Client Sam Sample ID: Matrix: Collect Dat Receive Da Collector: Moisture:	ple ID: EL-S 5486 Slud te: 28-J tte: 30-J Clien 22.5	SUMP-4.5' 512001 ge UN-21 UN-21 nt %				Pro Cl	oject: ient ID:	WN WN	NUC01025 NUC010				
Parameter	Qualifi	er Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date	Time	Batch	Mtd.
Rad Alpha Spec A Alphaspec U, Se	Analysis oil "As Received	"											
Uranium-233/234		19.8	+/-1.19	0.216	+/-2.38	0.500	pCi/g		MXS2	07/03/21	0947	2145971	1
Uranium-235/236		0.990	+/-0.301	0.134	+/-0.318	0.500	pCi/g						
Uranium-238		4.46	+/-0.566	0.161	+/-0.730	0.500	pCi/g						
Rad Liquid Scint	illation Analysi	S											
Liquid Scint Tes	99, Soil "As Rec	eived"	. / 0.240	0.000	. / 0.240	1.00	C ''/		112	07/07/01	0655	0145000	
Technetium-99	U	0.170	+/-0.348	0.602	+/-0.349	1.00	pC1/g		113	07/07/21	0655	2145888	2
The following Pr	ep Methods we	re performed				D (T .		Deces Detal				
Method	Description				Analyst	Date	11	me	Ргер Вассп				
Dry Soil Prep	Dry Soil Prep G	L-RAD-A-021			CXB7	06/30/21	17	59	2145898				
The following An	alytical Metho	ls were perfor	med										
Method	Description												
1	DOE EML HAS	L-300, U-02-RC	Modified										
2	DOE EML HAS	L-300, Tc-02-R0	C Modified										
Surrogate/Trace	r Recovery	Test						Batch	ID Recover	ry% Ac	ccepta	ble Lim	its
Uranium-232 T	Fracer	Alphaspec	U, Soil "As	Received"				21459	971 98	.8	(15%-	125%)	
Technetium-99m Tracer Liquid Scint Tc99, Soil "As Received"							21458	388 94	.1	(15%-	125%)		

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier	Result Uncertainty	MDC	TPU	RL	Units	PF	DF Analyst	Date Time	Batch]	Mtd.
Client Sample Sample ID:	ID: EL-SUN 548612	MP-4.5' 001			Pro Cl	oject: ient ID:	WN WN	UC01025 UC010			
Project:	East Lagoon I	Remediation Project									
Contact:	Ms. Cynthia	Гeague									
	Columbia, So	outh Carolina 29205					R	eport Date:	July 7,	2021	
	PO Drawer R										
Address :	LLC										
Company :	Westinghouse	e Electric Company,									

Batch ID Recovery% Acceptable Limits

Surrogate/Tracer Recovery

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting LimitMDA: Minimum Detectable ActivityTPU: Total Propagated UncertaintyMDC: Minimum Detectable ConcentrationFinit Concentration

Test

GEL LABORATORIES LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	Westinghous LLC PO Drawer R	e Electric Co	ompany,										
	Columbia, So	outh Carolin	a 29205					Re	port Date:		July 7,	, 2021	
Contact:	Ms. Cynthia	Teague											
Project:	East Lagoon	Remediation	n Project										
Client Sample ID: Sample ID: Matrix: Collect Date Receive Dat Collector: Moisture:	le ID: ELE04 548612 Sludge e: 29-JUN e: 30-JUN Client 7.84%	9-0629 002 I-21 I-21	-			Pro Cl:	oject: ient ID:	WNI WNI	UC01025 UC010				
Parameter	Qualifier	Result U	ncertainty	MDC	TPU	RL	Units	PF	DF Analys	t Date	Time	Batch	Mtd.
Rad Alpha Spec A Alphaspec U, Sou Uranium-233/234	nalysis il "As Received"	17.4	+/-1.40	0.291	+/-2.34	0.500	pCi/g		MXS2	07/03/21	0947	2145971	. 1
Uranium-235/236		4 12	+/-0.577	0.108	+/-0.391	0.500	pCi/g nCi/g						
Rad Liquid Scintil	lation Analysis	1.12	17 0.007	0.200	17 0.010	0.500	pers						
Liquid Scint Tc9	9, Soil "As Receive	ed"											
Technetium-99		3.09	+/-0.563	0.693	+/-0.666	1.00	pCi/g		JJ3	07/07/21	0723	2145888	3 2
The following Pre	p Methods were	performed											
Method	Description				Analyst	Date	Time	.]	Prep Batch				
Dry Soil Prep	Dry Soil Prep GL-F	RAD-A-021			CXB7	06/30/21	1759		2145898				
The following Ana	lytical Methods	vere perfor	med										
Method	Description												
1	DOE EML HASL-3	00, U-02-RC	Modified										
2	DOE EML HASL-3	800, Tc-02-RC	C Modified										
Surrogate/Tracer	Recovery	Гest					Ba	tch I	D Recover	y% A	ccepta	ble Lim	its
Uranium-232 Ti	racer	Alphaspec	U, Soil "As	Received"			21	4597	1 10	3	(15%-	-125%)	
Technetium-99r	n Tracer	Liquid Scir	nt Tc99, Soil	"As Received"			21	4588	8 96	5	(15%-	-125%)	

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Parameter	Qualifier Result Uncertainty	MDC	TPU	RL Units	PF DF Analyst	Date Time Batch Mtd.
Client Sample Sample ID:	ID: ELE049-0629 548612002			Project: Client ID:	WNUC01025 WNUC010	
Project:	East Lagoon Remediation Project					
Contact:	Ms. Cynthia Teague					
	Columbia, South Carolina 29205				Report Date:	July 7, 2021
	PO Drawer R					
Address :	LLC					
Company :	Westinghouse Electric Company,					

Batch ID Recovery% Acceptable Limits

Surrogate/Tracer Recovery

Notes:

The MDC is a sample specific MDC.

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution FactorMtd.: MethodDL: Detection LimitPF: Prep FactorLc/LC: Critical LevelRL: Reporting LimitMDA: Minimum Detectable ActivityTPU: Total Propagated UncertaintyMDC: Minimum Detectable ConcentrationFinit Concentration

Test

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: July 7, 2021

Client :	Westinghouse Elect PO Drawer R	tric Company, LLC					-		Page 1 o	of 3	
Contact: Workorder:	Columbia, South C Ms. Cynthia Teagu 548612	'arolina le									
Parmname		NOM	Sample (Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Alpha Spec Batch	2145971										
QC1204855498	548612001 DUP										
Uranium-233/2	234		19.8		23.7	pCi/g	17.8		(0%-20%)	MXS2	07/03/2109:47
		Uncert:	+/-1.19		+/-1.26						
		TPU:	+/-2.38		+/-2.74						
Uranium-235/2	.36		0.990		1.31	pCi/g	27.8*		(0%-20%)		
		Uncert:	+/-0.301		+/-0.332						
		TPU:	+/-0.318		+/-0.359	C :/	00.1*		(00) 000()		
Uranium-238		TT (4.46		5.45	pC1/g	20.1*		(0%-20%)		
		Uncert:	+/-0.566		+/-0.608						
001204955400	LCS	IPU:	+/-0.730		+/-0.820						
QC1204855499					17.0	nCi/a				MVG2	07/02/2100.47
Oranium-255/2	.54	Uncert			17.9	pc1/g				MA52	07/05/2109:47
					+/-2.37						
Uranium-235/2	36	110.			0.868	nCi/g					
Crainain 200/2		Uncert:			+/-0.313	pers					
		TPU:			+/-0.328						
Uranium-238		16.3			17.6	pCi/g		108	(75%-125%)		
		Uncert:			+/-1.23						
		TPU:			+/-2.33						
QC1204855497	MB										
Uranium-233/2	.34			U	0.0724	pCi/g				MXS2	07/03/2109:47
		Uncert:			+/-0.141						
		TPU:			+/-0.141						
Uranium-235/2	.36			U	0.0314	pCi/g					
		Uncert:			+/-0.0923						
		TPU:			+/-0.0924						
Uranium-238				U	-0.0131	pCi/g					
		Uncert:			+/-0.0864						
		TPU:			+/-0.0865						
Rad Liquid Scin Batch	tillation 2145888										
QC1204855340	548612001 DUP										
Technetium-99		U	0.170	U	0.348	pCi/g	0		N/A	A JJ3	07/07/2108:18
		Uncert:	+/-0.348		+/-0.392						
		TPU:	+/-0.349		+/-0.394						
QC1204855341	LCS										
Technetium-99		30.0			27.3	pCi/g		91	(75%-125%)	JJ3	07/06/2118:52
		Uncert:			+/-0.719						
		TPU:			+/-3.22						

QC1204855339 MB

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

						Page 2	2 of 3	
NOM	Sample Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Uncert:	U	0.280 +/-0.355 +/-0.356	pCi/g				JJ3	07/06/2116:08
	NOM Uncert: TPU:	NOM Sample Qual U Uncert: TPU:	NOM Sample Qual QC U 0.280 Uncert: +/-0.355 TPU: +/-0.356	NOM Sample Qual QC Units U 0.280 pCi/g Uncert: +/-0.355 TPU: +/-0.356	NOM Sample Qual QC Units RPD% U 0.280 pCi/g Uncert: +/-0.355 TPU: +/-0.356	NOM Sample Qual QC Units RPD% REC% U 0.280 pCi/g Uncert: +/-0.355 TPU: +/-0.356	U 0.280 pCi/g Uncert: +/-0.355 TPU: +/-0.356	U 0.280 pCi/g JJ3 Uncert: +/-0.355 +/-0.356 Horizontal

Notes:

Workorder

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- ** Analyte is a Tracer compound
- < Result is less than value reported

548612

- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD
- M REMP Result > MDC/CL and < RDL
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- UJ Gamma Spectroscopy--Uncertain identification
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- h Preparation or preservation holding time was exceeded

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder:	548612							Page 3 of 3	
Parmname		NOM	Sample Qual	QC	Units	RPD%	REC%	Range Anlst	Date Time

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable. ** Indicates analyte is a surrogate/tracer compound.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Radiochemistry Technical Case Narrative Westinghouse Electric Company PO SDG #: 548612

Product: Alphaspec U, Soil Analytical Method: DOE EML HASL-300, U-02-RC Modified **Analytical Procedure:** GL-RAD-A-011 REV# 28 **Analytical Batch:** 2145971

<u>Preparation Method:</u> Dry Soil Prep <u>Preparation Procedure:</u> GL-RAD-A-021 REV# 24 <u>Preparation Batch:</u> 2145898

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification
548612001	EL-SUMP-4.5'
548612002	ELE049-0629
1204855497	Method Blank (MB)
1204855498	548612001(EL-SUMP-4.5') Sample Duplicate (DUP)
1204855499	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Quality Control (QC) Information

Duplication Criteria between QC Sample and Duplicate Sample

The Sample and the Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

Sample	Analyte	Value
1204855498 (EL-SUMP-4.5'DUP)	Uranium-235/236	RPD 27.8* (0.00%-20.00%) RER 1.31 (0-3)
	Uranium-238	RPD 20.1* (0.00%-20.00%) RER 1.77 (0-3)

<u>Product:</u> Dry Weight <u>Preparation Method:</u> Dry Soil Prep <u>Preparation Procedure:</u> GL-RAD-A-021 REV# 24 <u>Preparation Batch:</u> 2145898 The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	<u>Client Sample Identification</u>
548612001	EL-SUMP-4.5'
548612002	ELE049-0629

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Liquid Scint Tc99, Soil <u>Analytical Method:</u> DOE EML HASL-300, Tc-02-RC Modified <u>Analytical Procedure:</u> GL-RAD-A-059 REV# 5 <u>Analytical Batch:</u> 2145888

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u>	Client Sample Identification
548612001	EL-SUMP-4.5'
548612002	ELE049-0629
1204855339	Method Blank (MB)
1204855340	548612001(EL-SUMP-4.5') Sample Duplicate (DUP)
1204855341	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Samples 1204855340 (EL-SUMP-4.5'DUP), 548612001 (EL-SUMP-4.5') and 548612002 (ELE049-0629) were recounted to verify sample results. Recounts are reported.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

2agto 1 of 1									0		à		GEL I	aborato	ories, Ll	ΓC		
Transfer #PO Line Item 1				JUUI (mistry Radi	1 D I I I I I I I I I I I I I I I I I I	U U L L L L L L L L L L L	y sav I Sper	C 7 Ianty Anali	S as C				Charle	savage	коац С 2940'	Ľ		
2000Number ⁽¹⁾ :		, Ů	ain of (ustody	and An	alytical I	Reque	st					Phone	: (843)	556-81	71		
PO#4500822910	Work Order Numbe			GEL Pro	ject Man	ager: Lin	tsay FG	bra			(5)		Eax: (843) 76				
Client Name: Westinghouse		Phone # 80	3.647.31	71			Sam	de Anal	ysis Re	queste		ill in d	ie num	ber of	contain	ners for	each test)	
Profest/Site Name: East Lagoon Remediation Project		Fax #				hould this	L8				·					Ý 	Preservative Type (3
Addess: 5801 Bluff Road, Hopkins, SC 29061					- 0 	sample be onsidered:	eniatr Ioniatr	be' I (pλ							-			
Conducted By: Olivia Macecevic Send	Results To: teaguecj	@ westingho	use.com		H)	Sp20	103 JO J	muina otosi l	66		-						Lomments lote: extra sample	S
\$612	and College	Time			9vit3	(.oim : (.oim : o nwo or office	nmber	sta sic Isubiv Isubiv	-oT							u	equired for sample	41
* For commonies - indicate war and stan date/inte	(wetherman	(Military) (himm)	Code (2)	Field S Thered ⁽³⁾ Ma	urix ê Kadioa	value (7)	n leiol	lotosi vibni	2								specific UC	
EL-SUMP-4.5'	06-28-21	12:37	υ	z	SL		1	×	×			ļ				All sa	mples reported "as found	.
ELE049-0629	06-29-21	09:20	U	z	SL		1	×	×							All sa	unples reported "as found	II.
												 			•			
							and a second											
Chain of	Custody Signatures					T	AT Req	uested:	Norm	al:	Rush	: X	Spec	ify 7 di	ay <u>turn</u>	around	(Subject to Surcharg	(e)
Relinquished By (Signed) Date Time	Received by (si	gned) I	ate	Time		Fax I	cesults:	[]Yes	[] N	0								
1 (1) - Ma - 430/21 (7):54	Show to	ler hut	XX	家司	4 5	X Selec	t Delive	rable: [C of A	[]0	C Sum	nary [] level		Level	2 [] L	evel 3 [] Level 4	
2	2 2 2	>		2	•	Addii	ional R	marks:										
3	6					For 1	ab Rec	eiving U.	se Only	: Custo	dy Seal	Intact?	[] Yes	7[]7	Vo Ct	ooler Te	<i>mp:</i> C	
> For sample shipping and delivery details, see Sample.	Receipt & Review form	(SRR.)			Sam	ple Collec	tion Tin	te Zone :	[] Ea	stern	[] Pac	fic [] Cent	31] Moun	itain _] Other:	
 Chain of Custody Number = Client Determined OC Codec: N = Normal Sample TR = Trin Rlank FD = Fileld Dun 	dicate. EB = Equipment Blan	k. MS = Matrix	Spike Sarr	ole. MSD =]	Matrix Spike	Duplicate Sa	mole. G =	Grab. C =	Composi	<u>ല</u>								
3.) Field Filtered: For liquid matrices, indicate with $a \cdot Y \cdot for$ yes the	sample was field filtered or -	N - for sample	vas not fiel	d filtered.														
 Matrix Codes: DW=Drinking Water, GW=Groundwater, SW=Surt 5.1 Samula Analysis Remested. Analysisal method remusted (j. e. 236) 	face Water, WW=Waste Wa	er, W=Water, N ver of containers	IL=Misc L	iquid, SO=So or each (i.e. a	il, SD=Sedin 3260B 3.60	nent, SL=Slue	dge, SS=S 1).	olid Waste	, 0=0il, ì	®=Filter, I	P=Wipe,	J=Urine,	F=Fecal,	N=Nasal				
 Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid, SH 	= Sodium Hydroxide, SA = S	iulfuric Acid, A	A = Ascorb	ic Acid HX	= Hexane, S1	C = Sodium T	hiosulfate	If no pres	ervatíve is	s added =	leave fiel	i biank						
7) KNOWN OR POSSIBLE HAZARDS Chai	acteristic Hazards	Listed	Waste		h	Othe	L Uharl	Tarland T	Π.					a, t	lease pi	rovide a	ny additional details boudtion and/or dien	tese
RCRA Metals CO =	riar intautor ignitable = Corrosive	(F.K.P	and U-lik	suction the second s)	(i.e.:	High/lo	w pH, as	bestos,	berylliu	m, irrite	unts, oth	er	<u>s c</u>	oncerns	s. (i.e.: (Origin of sample(s). 1)	be
As = Arsenic Hg = Mercury RE = Ra = Barium Se= Sclenium	- Reactive	Waste	ode(s):			misc. Desc	health ription:	tazards,	etc.)					<u>S</u>	f site co	ollectedf	rom, odd matrices, et	÷
Cd = Cadmium Ag= Silvet	A Regulated																	
Ur = Chromum MK = Misc. KUKA metals PUB Ph = 1 ead	= Polycniorinated hinherule																	
	ыримиуы													<u> </u>				

Clien	ADAUL			SDG/AR/COC/Work Order: 548412	110
Pacel	Ved By. TYE			Date Received: UBOTA	<u> </u>
(Parrier and Tracking Number			FedEx Express FedEx Ground UPS Field Services Con	urier Other
uspe	cted Hazard Information	Yes	٩	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Gro	up for further investigation.
	aped as a DOT Hazardous?		L	trazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
I) Di	d the client designate the samples are to be		l	C notation or radioactive stickers on containers equal client designation.	
C) Di	d the RSO classify the samples as		1	Maximum Net Counts Observed (Observed Counts - Area Background Counts):C Classified as: [Rad 1] Rad 2 Rad 3	PM / mR/Hr
) Di	d the client designate samples are hazardous?			COC notation or hazard labels on containers equal client designation.	
E) Di	d the RSO identify possible hazards?		1	I/O or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
	Sample Receipt Criteria	Yes	YZ,	2 Comments/Qualifiers (Required for Non-Conforming It	ems)
1	Shipping containers received intact and sealed?	L		Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2	Chain of custody documents included with shipment?			Circle Applicable: Client contacted and provided CUC CUC created upon receipt	111.1
3	Samples requiring cold preservation within $(0 \le 6 \deg. C)$?* (5B 711/24)			*all temperatures are recorded in Celsius	TEMP:
4	Daily check performed and passed on IR emperature gun?	2		Secondary Temperature Device Serial # (If Applicable): Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	1
5	Sample containers intact and scaled?			Sample D's and Containers Affected:	· · · · · · · · · · · · · · · · · · ·
6	at proper pH?		レジャン	If Preservation added, Lot#: If Nes, are Encores or Soil Kits present for solids? Yes No NA(If yes, take to	VOA Freezer)
7	Do any samples require Volatile Analysis?		No.	Do liquid VOA vials contain acid preservation? Yes No NA(If unknown, se Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected:	lect No)
8	Samples received within holding time?	レ	る語言	ID's and tests affected:	
9	Sample ID's on COC match ID's on bottles?	~		ID's and containers affected:	
10	Date & time on COC match date & time on bottles?	L		Circle Applicable: No dates on containers No times on containers COC missing info	Other (describe)
11	number of containers received match number indicated on COC? Are sample containers identifiable ac	lc		Cucie Applicable: No container count on COC Other (describe)	* * c
12 13	GEL provided by use of GEL labels? COC form is properly signed in			Circle Applicable: Not relinquished Other (describe)	: : : : : : : : : : : : : : : : : : : :
Com	relinquished/received sections? ments (Use Continuation Form if needed):	J	مرار مرار		
L					

 $(x,y) \in \mathcal{X}$

. .

25 3. 1. 2.

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-0651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NEL AP	200029
Indiana	C-SC-01
Kansas NEL AD	E 10332
Kansas NELAI Kontuoku SDWA	00120
Kentucky SDWA	90129
Lewisiana Deinleina Watan	90129
Louisiana Drinking water	LA024
Louisiana NELAP	03046 (A133904)
Maine	2019020
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122021-1
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2019–165
Pennsylvania NELAP	68–00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-21-19
Utah NELAP	SC000122021-35
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

List of current GEL Certifications as of 07 July 2021

Technical Basis Document: Sediment Sampling and Sediment Transect Interim Evaluation

"Remedial Investigation Phase II Sediment Sampling and Sediment Transect Interim Evaluation for the Westinghouse Columbia Fuel Fabrication Facility (WCFFF)"

Technical Basis Document

Remedial Investigation Phase II Sediment Sampling and Sediment Transect Interim Evaluation for the Westinghouse Columbia Fuel Fabrication Facility (WCFFF)

Prepared for:

Westinghouse Columbia Fuel Fabrication Facility 5801 Bluff Road Hopkins, South Carolina 29061-9121

Prepared by:

13397 Lakefront Drive, Suite 100 Earth City, Missouri 63045

July 28, 2021

1). Chem

W. Clark Evers, CHP, CSP Certified Health Physicist

Remedial Investigation Process

The Westinghouse Columbia Fuel Fabrication Facility (WCFFF) is currently in the process of performing a site Remedial Investigation (RI) in accordance with a Consent Agreement with the South Carolina Department of Health and Environmental Control (SCDHEC). Westinghouse and SCDHEC entered into this Consent Agreement in February 2019.

The purpose of the RI is to complete a comprehensive evaluation of groundwater, surface water, sediment and soils at the site to determine the source, nature and extent of impacts from historic activities. Following completion of the RI, the Consent Agreement requires WCFFF to perform a Feasibility Study (FS) to evaluate remedial alternatives. After SCDHEC approval of the FS, the Department will issue a Record of Decision (ROD) specifying the selected remedy or set of remedies for the site. WCFFF will then implement these remedies per a SCDHEC approved Remedial Design/Remedial Action Plan and issue a final report documenting remediation of the site and successful completion of the Consent Agreement.

This Technical Basis Document (TBD) provides an interim evaluation of the sediment data collected under the RI. This assessment will be included as part of the Final Remedial Investigation report that WCFFF will issue once the remaining scope of RI fieldwork is complete. Remedial alternatives will be evaluated in the FS.

For sediment, three significant sampling campaigns have been conducted across the site. Sediment sampling in Phase I of the RI was completed to gain a better understanding of the site conditions; additional sediment sampling was completed in Phase II of the RI to fully characterize sediment impacts; subsequently, an addendum was completed to perform bounding sampling based on the results of the Phase II investigation in the Mill Creek Corridor. The results of these comprehensive sampling campaigns have defined the limited horizontal and vertical extent of sediment impact. There are no current or future concerns for contaminants to potentially move offsite, and the documented impacts pose no potentially significant threat to plant workers, the general public or the environment.

RI Phase I Assessment

During Phase I of the RI, sediment samples were collected from various areas of the site including the Mill Creek Corridor. Prominent features of the Westinghouse Columbia Site, as well as the Mill Creek Corridor are identified in **Figure 1**. The locations of the RI Phase I sediment transects are shown in **Figure 2**.

Figure 2 – RI Phase I Sediment Transects

Mill Creek is a naturally meandering creek that was dammed to create Upper and Lower Sunset Lake, prior to the establishment of the Westinghouse Columbia site. A diversion canal was also created that redirected a majority of the water flow, limiting the volume of water in Upper and Lower Sunset Lake, and creating nearly stagnant conditions. This low flow of water through the Upper and Lower Sunset Lake, combined with the thick growth of trees and brush has created swamp like conditions.

Some of the Phase I sediment sample locations in Upper Sunset Lake and in Lower Sunset Lake were identified to contain Uranium (U) concentrations above the residential use screening level for soils (NUREG 1757, Vol. 2, Rev. 1, Appendix H), but below industrial use screening levels. These samples were collected from locations on the WCFFF property. Assessment of this data was completed in the Final Interim Remedial Investigation Data Summary Report, approved by SCDHEC on July 30, 2020, and concluded that the identification of U concentrations in the sediment does not pose any undue risk to public health and safety, nor does it indicate potential off-site impact. However, additional sampling and investigation to further understand the extent of the potential impact into the Mill Creek Corridor was planned as described in the Phase II RI Work Plan, approved by SCDHEC on October 14, 2020 and in an addendum approved on November 5, 2020.

RI Phase II Assessment

During Phase II of the RI, sampling was performed to further assess the vertical and horizontal extent of impact on sediment quality in the Mill Creek Corridor surface water body. Westinghouse collected sediment samples from 17 of the original sediment sample locations (SED-19 through SED-22 and SED-38 through SED-50), while also sampling at greater depths than were performed in Phase I. The Phase II sediment sampling began on November 9, 2020 and was completed December 4, 2020. Based on the Phase II results, additional sampling was proposed by WCFFF and approved by SCDHEC on February 22, 2021. This follow up sediment sampling campaign was conducted in March of 2021 and is discussed in the Mill Creek Corridor Bounding Section (beginning on page 14 of this document).

The locations of the RI Phase II sediment transects performed in November and December of 2020 are shown in **Figure 3**.

Figure 3 – RI Phase II Sediment Transects

RI Phase II sediment samples were collected from the previous Phase I locations at deeper intervals, and at new locations to bound previously identified areas of elevated residual radioactivity.

Upstream Areas (Sediment Background)

Sediment samples were collected at multiple locations to assess background sediment quality. These sediment samples were collected at locations that are upstream of the surface water flow from the site, where only naturally occurring radioactivity is expected to be present in the sediment. Locations SED-11 and SED-12 were each collected from a storm water ditch and are representative of the naturally occurring sediment within the storm water ditches as it enters the WCFFF site boundary.

Locations SED-51, SED-52, and SED-53 were collected just upstream of the site Entrance Dike, locations SED-54, SED-55, and SED-56 were collected well upstream within the flow path of Mill Creek, and SED-57, SED-58, and SED-59 were collected upstream of the diversion canal. The three sediment transects (sediment locations 51-59) are representative of the naturally occurring background sediment within Mill Creek, of which Upper and Lower Sunset Lakes are a part.

Upper and Lower Sunset Lakes

Three sediment transects in Upper Sunset Lake, and two sediment transects in Lower Sunset Lake were sampled during Phase I of the RI. These transects were placed to identify potential environmental impacts from historic plant operations. During Phase II, vertical sediment profiling was performed at 17 of the Phase I sediment locations.

Downstream Areas

Three of the sediment sampling transects (Figure 2) are downstream of the Lower Sunset Lake dike. This portion of Mill Creek is heavily forested, lowland swamp with minimal flow. The majority of the flow in Mill Creek through the WCFFF property is by way of the diversion canal (Figures 1 and 3) along the southern property boundary.

RI Phase II Interim Evaluation

All Phase II sediment samples were sent to an off-site laboratory for analysis of U, Technetium-99 (Tc-99), Ammonia, Fluoride, Nitrate, and Volatile Organic Compounds (VOCs). Reported chemical constituent results were below the EPA Regional Screening Levels for residential use, and therefore further comparisons to industrial screening levels of evaluation are not necessary.

The RI Phase II sediment radiological results were evaluated in accordance with WCFFF site procedure RA-433, "Environmental Remediation." The radiological screening levels provided in Table 1 in procedure RA-433 are based on single contaminant concentrations for each isotope. When multiple radionuclides are present, a "sum of fractions" (SOF) approach is used to assess compliance with the concentration limit. The SOF for each unique sample is calculated using the following equation:

$$SOF = \frac{Conc_{U-234}}{SSL_{,U-234}} + \frac{Conc_{U-235}}{SSL_{,U-235}} + \frac{Conc_{U-238}}{SSL_{,U-238}} + \frac{Conc_{Tc-99}}{SSL_{,Tc-99}}$$

The values in Table 1 represent soil concentrations of individual radionuclides, using conservative exposure parameters, that would be deemed in compliance with the dose limits specified in 10 CFR 20.1402 (i.e., equivalent to 25 mrem/year under Residential Use).

Contaminant	Residential Screening Level	Industrial Screening Level	Basis of Screening Level
Uranium - 234	13 pCi/g (0.002 mg/Kg)	3,310 pCi/g (0.5 mg/kg)	NUREG 1757, Vol. 1-2 , Appendix H ¹
Uranium – 235	8 pCi/g (3.704 mg/Kg)	39 pCi/g (18 mg/kg)	NUREG 1757, Vol. 1-2 , Appendix H ¹
Uranium – 238	14 pCi/g (41.667 mg/Kg)	179 pCi/g (533 mg/kg)	NUREG 1757, Vol. 1-2 , Appendix H ¹
Total Uranium	12.69 pCi/g (5.320 mg/Kg)	2,933 pCi/g (1,230 mg/kg)	Calculated based on NUREG 1757, Vol. 2, Rev. 1-2, Appendix H ²
Technetium - 99	19 pCi/g (1.110 E -03 mg/Kg)	89,400 pCi/g (5.2 mg/Kg)	NUREG 1757 Vol. 1-2 , Appendix H ¹

Table 1: Residential and Industrial Use Screening Levels

The Residential Use Screening Levels (RUSLs) were determined using highly conservative assumptions to develop an exposure scenario where it is assumed that a person would construct a house on the property, live on the property, drink the groundwater, and eat produce farmed on the property as well as fish caught on the property.

At the time of facility decommissioning, site specific Exposure Pathway Modeling will be used to develop Derived Concentration Guidance Levels (DCGLs) for the WCFFF following NUREG-1575, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). This guidance, commonly referred to as MARSSIM is a detailed instruction for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose- and risk-based regulation. The DCGL is a radionuclide specific concentration in pCi/g that is equal to the release criteria dose of 25 mRem/yr. While the Residential Screening Levels for soils are based on the most conservative assumptions, site specific DCGLs will generally be higher in most cases. For example, the recently decommissioned Westinghouse Hematite Site site-specific DCGLs for unrestricted release using a Residential Farmer Scenario are provided for reference in Table 2.

Table 2: Westinghouse Hematite Site Specific DCGLs

Contaminant	DCGL for Unrestricted Free Release to the Public	Basis of Screening Level
Uranium - 234	195.4 pCi/g	Hematite Decommissioning Plan (NRC License No SNM-33)
Uranium – 235	51.6 pCi/g	Hematite Decommissioning Plan (NRC License No SNM-33)
Uranium – 238	168.8 pCi/g	Hematite Decommissioning Plan (NRC License No SNM-33)
Total Uranium	170.2 pCi/g	Hematite Decommissioning Plan (NRC License No SNM-33)
Technetium - 99	25.1 pCi/g	Hematite Decommissioning Plan (NRC License No SNM-33)

Because site specific DCGLs will generally be higher, the RUSLs are provided in RA-433 for reference, and where practical, WCFFF will strive to achieve these values. However, it is appropriate to compare samples collected from within the WCFFF property boundary to the Industrial Use Screening Levels (IUSL) also listed in RA-433, which is representative of the current and future use of the property, until such time as the WCFFF undergoes full site decommissioning.

The IUSLs are also based on conservative assumptions, but these assumptions better represent the current and future use of the WCFFF, as it is assumed that the industrial worker will not live on the property, nor engage in the consumption of any food or water produced on the facility property.

<u>Sediment Sample Results</u>

This TBD provides the interim evaluation of sediment data collected to date under the RI. The Phase II radiological results are the focus of this TBD as the sediment sample analytical results from Phase I of the RI have been previously reported and discussed in the Final Interim Remedial Investigation Data Summary Report, approved by DHEC on July 30, 2020 (also known as the RI Phase I Report).

The Phase II data has been submitted to SCDHEC through routine monthly reports required by the Consent Agreement. This interim evaluation will be incorporated into the Final Remedial Investigation report that WCFFF will issue once the RI fieldwork is completed.

The sediment data can be categorized by the area of the site from which it was collected. This includes a new background sediment transect collected upstream of the diversion canal; additional bounding sampling collected in a site drainage ditch; additional sediment characterization performed in the Gator Pond; and additional characterization performed in the Mill Creek Corridor of Upper and Lower Sunset Lake.

Upstream Areas (Sediment Background)

In Phase I of the RI, two background sediment transects were collected upstream of the site entrance dike. While these background sediment results appear to reflect the levels of naturally occurring radioactive materials that will be identified in all sediments, an additional background sediment transect (SED-57, SED-58, and SED-59) was collected further upstream of the site diversion canal. The result of this additional background sediment transect are presented in Table 3, along with the original Phase I Transect results for reference.

Oerrende ID	Gross	Analyte	Activity	(pCi/g)	SOF	SOF
Sample ID	U-234	U-235	U-238	Tc-99	Residential	Industrial
SED-51-0-6 (Phase I)	2.10	0.18	1.42	0.00	0.3	0.0
SED-51-6-12 (Phase I)	1.27	0.07	1.15	4.89	0.4	0.0
SED-52-0-6 (Phase I)	1.77	0.31	1.72	0.00	0.3	0.0
SED-52-6-12 (Phase I)	1.88	0.05	1.45	0.00	0.3	0.0
SED-53-0-6 (Phase I)	2.15	0.19	1.45	0.00	0.3	0.0
SED-53-6-12 (Phase I)	2.06	0.07	2.34	0.00	0.3	0.0
SED-54-0-6 (Phase I)	1.78	0.12	1.36	1.51	0.3	0.0
SED-54-6-12 (Phase I)	1.48	0.12	1.87	0.00	0.3	0.0
SED-55-0-6 (Phase I)	2.05	0.00	1.74	6.19	0.6	0.0
SED-55-6-12 (Phase I)	1.62	0.16	1.62	0.00	0.3	0.0
SED-56-0-6 (Phase I)	2.02	0.21	1.40	2.53	0.4	0.0
SED-56-6-12 (Phase I)	1.89	0.03	1.72	0.00	0.3	0.0
SED-57P2-0-6 (Phase II)	2.22	0.11	1.82	NA	0.3	0.0
SED-57P2-6-12 (Phase II)	1.63	0.10	1.74	NA	0.3	0.0
SED-57P2-12-18 (Phase II)	1.49	0.00	2.05	NA	0.3	0.0
SED-58P2-0-6 (Phase II)	1.21	0.05	1.37	NA	0.2	0.0
SED-58P2-6-12 (Phase II)	1.38	0.03	1.15	NA	0.2	0.0
SED-59P2-0-6 (Phase II)	2.09	0.05	1.88	NA	0.3	0.0
SED-59P2-6-12 (Phase II)	1.52	0.05	1.27	NA	0.2	0.0

Table 3: Background Sediment Sampling Results

As can be seen from the data in Table 3 above, the results of the new background sediment transect are consistent with the results of the two background sediment transects collected during Phase I of the RI. All Phase I Tc-99 reported results in Table 3 above were less than the instruments Minimum Detectable Activity (MDA), meaning that the results could not reliably be distinguished from the laboratory instrument's background value. Therefore no additional Tc-99 sampling was performed in Phase II.

Site Drainage Ditch

In Phase I of the RI, location SED-16 in an on-site drainage ditch was identified to be elevated, but similar results were not identified further upstream or downstream of this location. To determine the size and extent of the elevated concentrations at location SED-16, additional bounding sampling was performed. Location SED-60 was collected approximately 50 ft upstream, and SED-61 was collected approximately 50 ft downstream, of the original SED-16 location. The results of this additional sediment sampling are presented in Table 4.

Semple ID	Gross	Analyte	Activity (pCi/g)	SOF	SOF	%
Sample ID	U-234	U-235	U-238	Tc-99	Residential	Industrial	Moist.
SED-16P2-0-6	67.2	3.31	12.1	0.614	6.5	0.2	25.8
SED-16P2-6-12	63.7	3.18	11.8	2.62	6.3	0.2	23.3
SED-16P2-12-24	6.03	0.48	1.99	3.71	0.9	0.0	18.4
SED-60P2-0-6	39.7	2.19	7.42	0.433	3.9	0.1	18.4
SED-60P2-6-12	44.4	1.81	8.17	0.483	4.3	0.1	18.4
SED-61P2-0-6	4.29	0.244	0.818	1.2	0.5	0.0	16.2
SED-61P2-6-12	9.17	0.267	2.79	7.96	1.4	0.0	13.6
SED-61P2-12-18	3.86	0.186	1.95	8.28	0.9	0.0	11

Table 4: Site Drainage Ditch Sediment Sampling Results

As can be seen from the data in Table 4 above, the results of the bounding sampling show that the elevated concentrations identified in location SED-16 are confined to the top 12 inches of soil and sediment, which is consistent with a surface release which is believed to be the source of surficial contamination in this area (1971 West Lagoon Rupture). While the top 12 inches in SED-60, and SED-61 remain elevated, concentrations are diminishing relative to SED-16. When compared to the RI Phase I sampling, this shows that the area of impact at location SED-16 is limited. Furthermore, this location remains in an industrial use area of the site. These concentrations do not represent any undue risk to the health and safety of the workforce or the public, and do not indicate potential off-site impact. Given the distance from the site boundary, there is little concern for migration, or offsite impact. This area will continue to be monitored, and potential remediation options will be evaluated during the Feasibility Study (FS) and approved by SCDHEC in the Record of Decision (ROD) as required by the Consent Agreement. Until remediation is performed, funding to clean-up the impact will be incorporated in the Decommissioning Funding Plan (DFP) required by Nuclear Regulatory Commission (NRC) regulations and the site's NRC license. The next triennial DFP update is due May 2022.

Gator Pond

In Phase I of the RI, surficial sediment samples identified the presence of Tc-99 in Gator Pond. To assess the vertical and horizontal extent of potential impact in Phase II of the RI, the original two locations, along with four new locations were sampled. The results of this additional sediment sampling are presented in Table 5.

Comple ID	Gross	Analyte /	Activity (p	oCi/g)	SOF	SOF	%
Sample ID	U-234	U-235	U-238	Tc-99	Residential	Industrial	Moist.
SED-23P2-0-6	1.36	0.0994	1.36	144	7.8	0.0	66.5
SED-23P2-6-12	1.19	0.0658	1.29	30.6	1.8	0.0	46.9
SED-23P2-12-24	1.06	0.0187	1.19	1.4	0.2	0.0	24.5
SED-23P2-24-36	1.11	0.0379	0.736	0.785	0.2	0.0	23.5
SED-24P2-0-6	3.12	0.16	2.13	118	6.6	0.0	80.4
SED-24P2-6-12	2.63	0.153	1.67	158	8.7	0.0	92
SED-24P2-12-18	1.57	0.217	1.47	33.3	2.0	0.0	75.9
SED-62P2-0-6	1.21	0.167	1.73	22.9	1.4	0.0	33.2
SED-62P2-6-12	1.57	0.0659	2	2.89	0.4	0.0	22.9
SED-62P2-12-24	1.84	0	1.12	1.08	0.3	0.0	23.6
SED-63P2-0-6	0.853	0.148	0.875	25	1.5	0.0	22.8
SED-63P2-6-12	0.76	0.0985	0.649	2.63	0.3	0.0	27.5
SED-64P2-0-6	1.3	0.0856	1.18	85.8	4.7	0.0	22.1
SED-64P2-6-12	1.11	0.0301	1.32	5.53	0.5	0.0	32.2
SED-65P2-0-6	1.01	0.113	0.726	312	16.6	0.0	22.4
SED-65P2-6-12	1.12	0	0.791	8.41	0.6	0.0	31.9

Table 5: Gator Pond Sediment Sampling Results

As can be seen from the data in Table 5 above, the results of the Gator Pond sediment sampling show elevated concentrations of Tc-99 across the Gator Pond in the top 6 inches of sediment. To a lesser extent, residual amounts of Tc-99 were identified at greater depths extending down to approximately 18 inches below the ground surface. Gator Pond is the only area of the site where Tc-99 is present in sediments above residential levels. Possible methods of contaminant transport into the Gator Pond include overland flow, and/or groundwater intrusion through permeable sands and sediments at the bottom of Gator Pond. Ongoing studies of the area in the Phase II RI will help determine a potential cause.

Gator Pond represents an industrial use area of the site and is not a source of drinking water; therefore, these concentrations do not represent any undue risk to the health and safety of the workforce or the public, and do not indicate a potential for off-site impact. This area will continue to be monitored, and potential remediation options will be evaluated during the FS and approved by SCDHEC in the ROD as required by the Consent Agreement. Until remediation is performed, funding to clean-up the impact will be incorporated in the Decommissioning Funding Plan (DFP) required by NRC regulations and the site's NRC license. The next triennial DFP update is due May 2022.

Mill Creek Corridor

During Phase I of the RI, 17 sediment sample locations within Upper and Lower Sunset Lake were identified to contain elevated concentrations of U in sediments. To further assess the vertical and horizontal extent of the potential impact, additional sampling was performed at these locations, extending to greater depths. The results of this additional sediment sampling are presented in Table 6.

O a man la ID	Gros	s Analyte	Activity	(pCi/g)	SOF	SOF	%
Sample ID	U-234	U-235	U-238	Tc-99	Residential	Industrial	Moist.
SED-19P2-0-6	19.1	1.02	5.15	0.208	2.0	0.1	87.8
SED-19P2-6-12	27	1.22	6.42	1.12	2.7	0.1	87.6
SED-19P2-12-18	2.05	0.0675	1.51	0	0.3	0.0	68.6
SED-20P2-0-6	1.72	0.0212	1.67	0.638	0.3	0.0	39.1
SED-20P2-6-12	2.13	0.094	1.5	0.265	0.3	0.0	36.2
SED-20P2-12-24	1.43	0.145	1.89	0.208	0.3	0.0	32.4
SED-20P2-24-36	1.49	0.0841	1.4	0.7	0.3	0.0	32.5
SED-21P2-0-6	13.2	0.393	3.79	1.17	1.4	0.0	77.5
SED-21P2-6-12	2.19	0.131	1.51	0.528	0.3	0.0	72.7
SED-21P2-12-24	1.56	0.0344	1.07	0.225	0.2	0.0	45.8
SED-21P2-24-36	1.75	0	0.97	0.0586	0.2	0.0	52.5
SED-22P2-0-6	6.21	0.257	2.24	0.304	0.7	0.0	61.1
SED-22P2-6-12	1.97	0.192	0.971	0.0333	0.2	0.0	53
SED-22P2-12-24	1.09	0.035	0.838	0	0.1	0.0	36.5
SED-22P2-24-36	1.81	0.225	1.08	0	0.2	0.0	25.8
SED-38P2-0-6	60.9	3.12	17	2.13	6.4	0.2	74.5
SED-38P2-6-12	4.19	0.276	2.52	0.116	0.5	0.0	67.2
SED-38P2-12-24	3.01	0.188	1.71	0.174	0.4	0.0	76
SED-38P2-24-36	1.74	0.0835	1.6	0.128	0.3	0.0	44.3
SED-39P2-0-6	2.22	0.0959	1.81	0.626	0.3	0.0	45.1
SED-39P2-6-12	2.37	0.0929	1.85	0.732	0.4	0.0	43.7
SED-39P2-12-24	1.58	0.243	1.63	0.536	0.3	0.0	43.3
SED-39P2-24-36	1.86	0.181	1.96	0.281	0.3	0.0	33.1
SED-40P2-0-6	4.69	0.362	2.29	0.4	0.6	0.0	32.2
SED-40P2-6-12	1.34	0.0449	1.43	0.199	0.2	0.0	72.3
SED-40P2-12-24	1.17	0	1.09	0.085	0.2	0.0	34.8
SED-40P2-24-36	1.36	0.0645	1.23	0.137	0.2	0.0	32
SED-41P2-0-6	17	0.789	3.38	1.12	1.7	0.0	24.7
SED-41P2-6-12	1.84	0.0733	1.29	0.038	0.2	0.0	85.8

Table 6: Mill Creek Sediment Sampling Results

O a manda I D	Gross Analyte Activity (pCi/g)				SOF	SOF	%
Sample ID	U-234	U-235	U-238	Tc-99	Residential	Industrial	Moist.
SED-41P2-12-24	2.14	0	1.87	0.216	0.3	0.0	67.6
SED-41P2-24-36	0.806	0.06	0.925	0.185	0.1	0.0	78.7
SED-42P2-0-6	31.1	1.18	7.57	1.21	3.1	0.1	92
SED-42P2-6-12	4.34	0.248	1.68	0.137	0.5	0.0	84.3
SED-42P2-12-24	3.19	0.135	1.5	0.0327	0.4	0.0	70.5
SED-42P2-24-36	1.57	0.0342	1.58	0 0.2		0.0	71.3
SED-43P2-0-6	5.13	0.211	1.87	0.226	0.6	0.0	71.4
SED-43P2-6-12	16	0.873	4.5	0.00633	1.7	0.1	80.3
SED-44P2-0-6	435	24.3	98.7	9.42	9.42 44.0		88.9
SED-44P2-6-12	34	1.57	8.74	4.33	3.7	0.1	84.9
SED-44P2-12-18	3.34	0.0293	2.7	0	0.5	0.0	73.3
SED-45P2-0-6	6	0.325	1.92	0	0.6	0.0	87.3
SED-45P2-6-12	2.95	0.0545	1.48	0	0.3	0.0	75.7
SED-46P2-0-6	11.6	0.251	2.85	0	1.1	0.0	89.4
SED-46P2-6-12	10.4	0.419	3.55	0.11	1.1	0.0	83.8
SED-47P2-0-6	3.32	0.0528	1.95	0	0.4	0.0	76
SED-47P2-6-12	4.86	0.0999	2.41	0	0.6	0.0	89.4
SED-48P2-0-6	2.49	0.154	2.24	0	0.4	0.0	70.3
SED-48P2-6-12	2.11	0.169	1.77	0	0.3	0.0	36.8
SED-48P2-12-18	1.63	0.205	1.85	0	0.3	0.0	33.8
SED-49P2-0-6	5.1	0.142	2.25	0	0.6	0.0	77.7
SED-49P2-6-12	2.85	0.0436	2.04	0	0.4	0.0	70.4
SED-50P2-0-6	6.83	0.351	2.65	0	0.8	0.0	83.9
SED-50P2-6-12	2.33	0.152	1.83	0	0.3	0.0	66
SED-50P2-12-24	1	0.139	0.808	0	0.2	0.0	59.4

 Table 6: Mill Creek Sediment Sampling Results (continued)

The majority of the Phase II RI sediment results are consistent with the results collected from Phase I, showing only residual levels of U contamination in the surficial layer of sediment of Mill Creek. However, there is one significant sediment result that stands out. Location SED-44 (0-6") was significantly more elevated than any of the surrounding sediment locations collected during either the Phase I or Phase II sampling. This prompted an additional sampling campaign to further bound the extent of potential impact in this area.

Mill Creek Corridor Bounding Sampling

During the RI Phase II bounding efforts, a sampling plan was developed and submitted to SCDHEC for review and approval. This plan established two bounding "boxes" placed around the location of SED-44. One box (with 4 corner points) was approximately 10 m² in area, and the other was approximately 100 m² in area. An additional sediment transect was also placed between the location of SED-44 and the Upper Sunset Lake dike which is the impounding barrier downstream. Samples SED-66, SED-67, and SED-68 were collected from this transect to determine if additional depositional areas could be identified further downstream of SED-44. The approximate locations of these bounding samples are shown in Figure 4.

The original SED-44 results are presented alongside the bounding sample results in Table 7. Locations SED-B1, SED-B2, SED-B3, and SED-B4 represent the corner points of the 10 m^2 bounding area, and SED-B5, SED-B6, SED-B7, and SED-B8 represent the corner points of the 100 m^2 bounding area. SED-66, SED-67, and SED-68 make up the new sediment transect that was placed approximately 25 ft upstream of the Upper Sunset Lake dike.

Sample ID	Gross	Analyte	Activity	(pCi/g)	SOF	SOF	%
	U-234	U-235	U-238	Tc-99	Residential	Industrial	Moist.
SED-44P2-0-6	435.0	24.3	98.7	9.4	44.0	1.3	88.9
SED-44P2-6-12	34.0	1.6	8.7	4.3	3.7	0.1	84.9
SED-44P2-12-18	3.3	0.0	2.7	0.0	0.5	0.0	73.3
SED-B1-0-6	401.0	26.9	95.7	23.7	42.3	1.3	83.6
SED-B1-6-12	3.2	0.3	2.0	0.3	0.4	0.0	72.3
SED-B2-0-6	267.0	15.8	60.3	19.1	27.8	0.8	89.1
SED-B2-6-12	5.5	0.4	2.3	0.7	0.7	0.0	77.1
SED-B3-0-6	47.2	2.6	13.1	4.4	5.1	0.2	82.9
SED-B3-6-12	90.6	4.8	22.1	5.3	9.4	0.3	85.3
SED-B4-0-6	33.6	2.3	7.8	1.1	3.5	0.1	94.2
SED-B4-6-12	10.4	0.4	3.5	0.4	1.1	0.0	73.5
SED-B5-0-6	30.0	1.4	7.3	0.6	3.0	0.1	94.6
SED-B5-6-12	4.4	0.2	2.3	1.4	0.6	0.0	72.9
SED-B6-0-6	30.4	1.8	6.9	1.1	3.1	0.1	92.2
SED-B6-6-12	8.0	0.4	2.9	1.4	0.9	0.0	73
SED-B7-0-6	24.7	1.1	6.3	3.7	2.7	0.1	78
SED-B7-6-12	5.5	0.3	3.2	0.5	0.7	0.0	77.6
SED-B8-0-6	5.5	0.3	3.2	0.9	0.7	0.0	98
SED-B8-6-12	37.6	1.9	8.7	1.4	3.8	0.1	90.5
SED-66-0-6	14.5	0.6	4.2	2.2	1.6	0.0	63.3
SED-66-6-12	4.8	0.3	2.5	0.8	0.6	0.0	49
SED-66-12-24	1.5	0.2	1.2	0.2	0.2	0.0	51.7
SED-67-0-6	14.8	0.7	4.4	1.8	1.6	0.0	86.5
SED-67-6-12	2.8	0.1	1.4	0.6	0.4	0.0	70.4
SED-67-12-24	2.6	0.1	1.4	0.5	0.3	0.0	71.8
SED-68-0-6	1.0	0.0	1.5	0.1	0.2	0.0	28
SED-68-6-12	1.3	0.1	1.1	0.0	0.2	0.0	26.3
SED-68-12-24	0.1	1.2	0.0	0.6	0.2	0.0	26.8

Table 7: SED-44 Bounding Sediment Sampling Results

As can be seen from the results above, locations SED-B1 and SED-B2 still have elevated U concentrations in the surficial layer indicating that the area of the interest around SED-44 may be slightly greater than $10m^2$. However, the results from all the surrounding sample areas are consistent with the levels seen throughout Upper and Lower Sunset Lake and indicate that while the area may be slightly greater than $10 m^2$, it is less than $100 m^2$ and appears to be isolated to this small area in Upper Sunset Lake. The elevated concentrations also appear to be limited to the surficial layer, and do not extend deeper into the sediment. Lastly it can be noted above that the
sample media itself was very high in percent moisture because these samples were mostly collected from areas under standing water. However, the analytical laboratory results are reported dried.

When evaluating radiological samples, the water (moisture content) in the sample is an efficient shield to radioactivity, reducing the amount of radioactivity transmitted into the environment. The water also adds weight to the overall sample mass. If the water content of a sediment sample is removed through heating and drying the sample, then the sample results are not necessarily reflective of the actual sediment that exists in the environment, which is covered by and saturated with water. Therefore, it is appropriate to interpret the results moving forward in two ways, Dry (as reported by the laboratory), and Wet (accounting for moisture in the sample). It is also appropriate to focus on the surficial sediment layer, since the underlying sediment concentrations are much lower, and the surficial layer provides a bounding case.

Next an area average calculation was performed on the 10 m^2 and 100 m^2 bounding areas. Utilizing the laboratory reported results (dry), a straight average was performed on the 10m^2 bounding area, giving equal weighting to each sample. The 10 m^2 area average results are presented in Table 8. A weighted average was applied to the 100 m^2 area, assigning a 10% area weight to the 10 m^2 average, and even weighting to the remaining 4 corner points. The 100m^2 area average results are presented in Table 9.

The 10 m² area average calculation was repeated utilizing moisture corrected activity (wet), which better represents the "as found" condition of the sediment, since it exists in extremely wet conditions nearly all year round. These results are reported in Table 10. The moisture corrected results were also used to calculate a weighted average for the 100 m² bounding area. These results are reported in Table 11.

Table 8: SED-44 10 m² Bounding Area Average (Dry)

	Gross	Analyte	Activity	(pCi/g)	Calculated	SOF	SOF	% of	Gross	Analyte	Activity	(pCi/g)	SOF	SOF
Sample ID	U-234	U-235	U-238	Тс-99	Enrichment (%)	Resid.	Indust.	area	U-234	U-235	U-238	Тс-99	Resid.	Indust.
SED-44P2-0-6	435.0	24.3	98.7	9.4	3.7	44.0	1.3	20%	87.0	4.9	19.7	1.9	8.8	0.3
SED-B1-0-6	401.0	26.9	95.7	23.7	4.2	42.3	1.3	20%	80.2	5.4	19.1	4.7	8.5	0.3
SED-B2-0-6	267.0	15.8	60.3	19.1	4.0	27.8	0.8	20%	53.4	3.2	12.1	3.8	5.6	0.2
SED-B3-0-6	47.2	2.6	13.1	4.4	3.0	5.1	0.2	20%	9.4	0.5	2.6	0.9	1.0	0.0
SED-B4-0-6	33.6	2.3	7.8	1.1	4.4	3.5	0.1	20%	6.7	0.5	1.6	0.2	0.7	0.0
Area Average								-	236.8	14.4	55.1	11.5	24.6	0.7

10 m² Bounding area, 0-6 inch layer, dried sample activity

Table 9: SED-44 100 m² Bounding Area Average (Dry)

100 m² Bounding area, 0-6 inch layer, dried sample activity

	Gross	Analyte	Activity	(pCi/g)	Calculated	SOF	SOF	% of	Gross	Analyte	Activity	(pCi/g)	SOF	SOF
Sample ID	U-234	U-235	U-238	Tc-99	Enrichment (%)	Resid.	Indust.	area	U-234	U-235	U-238	Tc-99	Resid.	Indust.
10M2-0-6-WA	236.8	14.4	55.1	11.5	N/A	24.6	0.7	10%	23.7	1.4	5.5	1.2	2.5	0.1
SED-B5-0-6	30.0	1.4	7.3	0.6	2.9	3.0	0.1	23%	6.8	0.3	1.6	0.1	0.7	0.0
SED-B6-0-6	30.4	1.8	6.9	1.1	4.0	3.1	0.1	23%	6.8	0.4	1.6	0.3	0.7	0.0
SED-B7-0-6	24.7	1.1	6.3	3.7	2.8	2.7	0.1	23%	5.6	0.3	1.4	0.8	0.6	0.0
SED-B8-0-6	5.5	0.3	3.2	0.9	1.4	0.7	0.0	23%	1.2	0.1	0.7	0.2	0.2	0.0
Weighted Average									44.1	2.5	10.8	2.6	4.6	0.1

Table 10: SED-44 10 m² Bounding Area Average (Wet)

Commis ID	Gross Analyte Activity (pCi/g)			(pCi/g)	Calculated	SOF	SOF	% of	Gross	Analyte	Activity	(pCi/g)	SOF	SOF
Sample ID	U-234	U-235	U-238	Tc-99	Enrichment (%)	Resid.	Indust.	area	U-234	U-235	U-238	Tc-99	Resid.	Indust.
SED-44P2-0-6	48.3	2.7	11.0	9.4	3.7	5.3	0.1	20%	9.7	0.5	2.2	1.9	1.1	0.0
SED-B1-0-6	65.8	4.4	15.7	23.7	4.2	8.0	0.2	20%	13.2	0.9	3.1	4.7	1.6	0.0
SED-B2-0-6	29.1	1.7	6.6	19.1	4.0	3.9	0.1	20%	5.8	0.3	1.3	3.8	0.8	0.0
SED-B3-0-6	8.1	0.4	2.2	4.4	3.0	1.1	0.0	20%	1.6	0.1	0.4	0.9	0.2	0.0
SED-B4-0-6	1.9	0.1	0.5	1.1	4.4	0.3	0.0	20%	0.4	0.0	0.1	0.2	0.1	0.0
Area Average									30.6	1.9	7.2	11.5	3.7	0.1

10 m² Bounding area, 0-6 inch layer, wet sample activity (moisture corrected)

Table 11: SED-44 100 m² Bounding Area Average (Wet)

100 m² Bounding area, 0-6 inch layer, wet sample activity (moisture corrected)

Comple ID	Gross	Analyte	Activity	(pCi/g)	Calculated	SOF	SOF	% of	Gross	Analyte	Activity	(pCi/g)	SOF	SOF
Sample ID	U-234	U-235	U-238	Tc-99	Enrichment (%)	Resid.	Indust.	area	U-234	U-235	U-238	Tc-99	Resid.	Indust.
10M2-0-6-WA	30.6	1.9	7.2	11.5	N/A	3.7	0.1	10%	3.1	0.2	0.7	1.2	0.4	0.0
SED-B5-0-6	1.6	0.1	0.4	0.6	2.9	0.2	0.0	23%	0.4	0.0	0.1	0.1	0.0	0.0
SED-B6-0-6	2.4	0.1	0.5	1.1	4.0	0.3	0.0	23%	0.5	0.0	0.1	0.2	0.1	0.0
SED-B7-0-6	5.4	0.2	1.4	3.7	2.8	0.7	0.0	23%	1.2	0.1	0.3	0.8	0.2	0.0
SED-B8-0-6	0.1	0.0	0.1	0.9	1.4	0.1	0.0	23%	0.0	0.0	0.0	0.2	0.0	0.0
Weighted Average									5.2	0.3	1.3	2.6	0.7	0.0

Mill Creek Dose & Risk Assessment

In accordance with WCFFF site procedure RA-433, when elevated sample results such as these from SED-44 are identified, further evaluation of the potential risks to the work force and public health and safety are completed. The average concentrations reported in Tables 8 through 11 above were used to develop a dose and risk assessment of the elevated area of sample SED-44. RESRAD-ONSITE Version 7.2 was used to calculate potential dose and risk to the evaluated receptor (residential farmer). RESRAD-ONSITE (formerly RESRAD) is a computer model developed by the Argonne National Laboratory (ANL) for the U.S. Department of Energy (DOE). RESRAD-ONSITE calculates site-specific risk and dose to various future hypothetical on-site receptors at sites with residual radioactive materials.

The use of the RESRAD family of codes for modeling risk and dose has become an acceptable regulatory standard. RESRAD-ONSITE Version 7.2 incorporates recently (2014) updated dose conversion and morbidity slope factors calculated by Oak Ridge National Laboratory (ORNL). These updated factors are presented in the ORNL document entitled Calculation of Slope Factors and Dose Coefficients (ORNL 2014) and are included in the DCFPAK 3.02 library of the RESRAD-ONSITE Version 7.2 model. The derivations of these factors are based on updated decay chain and nuclide energy data presented in International Commission on Radiological Protection Publication (ICRP)-107, Nuclear Decay Data for Dosimetric Calculations (ICRP 2008).

Using the default Residential Farmer scenario in RESRAD-ONSITE, 8 separate dose and risk models were created using both dry (laboratory reported) and wet (moisture corrected) results:

- SED-44 Area of Interest (dry)
- SED-44 Area of Interest (wet)
- SED-44 10m² average (dry)
- SED-44 10m² average (wet)
- SED-44 100m² average (dry)
- SED-44 100m² average (wet)
- Mill Creek (dry)
- Mill Creek (wet)

Each Dose and Risk assessment was evaluated for a period of 100 years. The wet conditions are considered most reflective of the current site conditions. Mill Creek, and subsequently Upper and Lower Sunset Lake remain saturated throughout the year. Therefore, the modeled scenario for wet conditions uses the moisture corrected sample activity, which assumes that the sediment is saturated, and has at least 12 inches (0.3 m) of water cover. The actual measured depth of water at the time of sampling in this area measured between 13.5 and 44 inches.

The Dry conditions are only reported as a "worst case scenario" in the extremely unlikely event that Mill Creek would run dry, or the area would experience an extreme and unforeseen drought. Therefore, the modeled scenario for dry conditions uses the laboratory dried sample activity and assumes no water cover. RESRAD-ONSITE parameters that differ from the default Residential Farmer settings are shown in Table 12.

Area	Parameter	Wet Conditions	Dry Conditions
	U-234 (pCi/g)	48.3	435
	U-235 (pCi/g)	2.7	24.3
	U-238 (pCi/g)	11	55.1
	Tc-99 (pCi/g)	9.4	9.4
SED-44 Area of Interest	Area (m ²)	10	10
	Thickness (m)	0.15	0.15
	Length parallel to aquifer (m)	1	1
	Cover thickness (m)	0.3	0
	Cover Density (g/cc)	1	N/A
	U-234 (pCi/g)	30.6	236.8
	U-235 (pCi/g)	1.9	14.4
	U-238 (pCi/g)	7.2	55.1
	Tc-99 (pCi/g)	11.5	11.5
SED-44 10 m ² Ave	Area (m2)	10	10
	Thickness (m)	0.15	0.15
	Length parallel to aquifer (m)	1	1
	Cover thickness (m)	0.3	0
	Cover Density (g/cc)	1	N/A
	U-234 (pCi/g)	5.2	44.1
	U-235 (pCi/g)	0.3	2.5
	U-238 (pCi/g)	1.3	10.8
	Tc-99 (pCi/g)	2.6	2.6
SED-44 100 m ² Ave	Area (m2)	100	100
	Thickness (m)	0.15	0.15
	Length parallel to aquifer (m)	10	10
	Cover thickness (m)	0.3	0
	Cover Density (g/cc)	1	N/A
	U-234 (pCi/g)	4.5	37.2
	U-235 (pCi/g)	0.2	1.9
	U-238 (pCi/g)	1.1	9.4
	Tc-99 (pCi/g)	1	1
Mill Creek	Area (m2)	14500	14500
	Thickness (m)	0.15	0.15
	Length parallel to aquifer (m)	381	381
	Cover thickness (m)	0.3	0
	Cover Density (g/cc)	1	N/A

Table 12: RESRAD-ONSITE Dose and Risk Parameters

Using the parameters listed in Table 12, eight separate dose evaluations, and eight separate risk reports were generated. These sixteen individual dose and risk reports combined represent over 400 pages of information and are available for review upon request. The maximum dose and risk reported over the 100 year period for each scenario is summarized in Table 13.

	Wet Conditi	ons	Dry Conditio	ns
Area	Max. Dose (mRem/vr)	Max. Risk	Max. Dose (mRem/vr)	Max. Risk
SED-44 Area of Interest	1.843	1.44E-05	17.13	1.88E-04
SED-44 10 m ² Ave	1.18	9.24E-06	10.5	1.23E-04
SED-44 100 m ² Ave	0.39	3.69E-06	2.567	3.47E-05
Mill Creek	0.421	4.56E-06	3.111	4.59E-05

Table 13: Mill Creek Dose & Risk Summary

The SED-44 Area of Interest is on WCFFF property and is not publicly accessible. It is within a controlled area that is monitored and patrolled by site security. Site personnel also monitor the area and perform environmental sampling. However, should a member of the public intentionally or inadvertently access the area, even under the potential worst case scenario, there is no risk of excessive exposure, as the calculated maximum exposure is below the threshold of 25 mRem/yr for unrestricted release.

Rather than making assumptions about the quantity of radioactive material present in the area, the dose and risk assessment summarized in Table 13 shows that, even under the potential worst case scenario, projected doses to a member of the public would not exceed regulatory criteria or require any type of posting or access restriction. No immediate action is required based on this assessment, and evaluation of remedial alternatives will be performed in the FS. Until remediation is performed, funding to clean-up the impact will be incorporated in the Decommissioning Funding Plan (DFP) required by NRC regulations and the site's NRC license. The next triennial DFP update is due May 2022.

Conclusions

Evaluation of the elevated sediment results identified on WCFFF property could lead to three possible conclusions. First, the results could indicate an immediate need to take remedial action based on the determined level of risk. Second, the results could indicate that further evaluation is warranted in the FS that will be performed as part of the Consent Agreement, and third, the results could indicate that no action is necessary.

Based on this interim evaluation of the Phase II RI sediment sampling results, the follow up bounding sampling results, and the dose modeling/associated risk estimates, no immediate action

is necessary. The results of these comprehensive sampling campaigns have defined the limited horizontal and vertical extent of sediment impact. There are no current or future concerns for contaminants to potentially move offsite, and the documented impacts pose no potentially significant threat to plant workers, the general public or the environment. Continued environmental monitoring per the site's NRC license and WCFFF's procedure RA-434, Environmental Data Management, will be performed, and further evaluation in the areas of the site drainage ditch, Gator Pond and the Mill Creek Corridor will be included in the Final RI report and in the FS required by the Consent Agreement.

<u>References</u>

- NRC 2006. Consolidated Decommissioning Guidance: Decommissioning Process for Materials Licensees, NUREG-1757, Vol. 1, Rev. 2.
- NRC 2006. Consolidated Decommissioning Guidance: Characterization, Survey, and Determination of Radiological Criteria, NUREG-1757, Vol. 2, Rev. 1.
- ANL 1993. Argonne National Laboratory, Environmental Assessment and Information Sciences Division. *Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil*. April 1993.
- NRC 1992. Residual Radioactive Contamination from Decommissioning: Technical Basis for Translating Contamination Levels to Annual Total Effective Dose Equivalent, Volume 1. NUREG/CR-5512. PNL-7994. October 1992.
- ORNL 2014. Oak Ridge National Laboratory. Oak Ridge, Tennessee. Calculation of Slope Factors and Dose Coefficients. ORNL/TM-2013/00. September 2014.
- RA-433, Rev 1 WCFFF Environmental Remediation Procedure, dated January 16, 2020.
- RA-434, Rev 0 WCFFF Environmental Data Management Procedure, dated July 11, 2019.

Attachment C

Sanitary Lagoon Sludge Sampling Results

		Sample	SLS-02	SLS-04	SLS-06	SLS-08	SLS-10	SLS-11	SLS-12	SLS-14	SLS-15	SLS-16	SLS-18	SLS-20	SLS-22	SLS-23	SLS-24
		Date	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021	6/15/2021
Group	Analyte	Units															
Radiological	Technetium-99	pCi/g	1.26	1.95	0 ##	4.23	2.37	1.03	3.33	22.8	0.200 #	1.02	11.2	3.00	2.96	3.25	1.32
Radiological	Uranium-233/234	pCi/g	43.4	48.4	14.7	1880	12.6	309	2210	2870	33.4	192	2540	1790	1380	1300	1940
Radiological	Uranium-235/236	pCi/g	2.71	2.61	0.836	146	0.732	15.0	121	189	2.29	11.1	147	120	96.6	107	144
Radiological	Uranium-238	pCi/g	9.38	12.0	3.04	389	3.16	51.2	418	703	6.46	35.2	516	350	295	316	348
Chemical	Ammonia	mg/kg	100	26.9	133	2720	34.2	1150	4800	1330	91.5	151	3540	4780	3890	3820	5450
Chemical	Fluoride	mg/kg	8.54	12.2	12.5	67.2	12.2	14.4	152	84.5	2.28	3.25	71.2	108	114	94.1	137
Chemical	Nitrate ion	mg/kg	< 1.28	< 1.18	< 1.26	< 15.8	< 1.19	< 3.55	< 22.8	< 9.00	< 1.37	< 1.61	< 16.9	< 18.9	< 19.4	< 14.5	< 25.5

Attachment C

Sanitary Lagoon Analytical Results

Westinghouse Columbia Fuel Fabrication Facility, Hopkins, SC

		Sample	SLS-1	SLS-21	SLS-25	SLS-3	SLS-5	SLS-B1	SLS-B2
		Date	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021
Group	Analyte	Units							
Radiological	Technetium-99	pCi/g	2.86	11.4	6.56	5.58	50.2	1.16	1.42
Radiological	Uranium-233/234	pCi/g	99.9	299	2490	105	351	42.5	50.0
Radiological	Uranium-235/236	pCi/g	4.49	14.1	124	5.81	17.3	1.70	2.36
Radiological	Uranium-238	pCi/g	20.8	61.8	546	24.3	80.3	8.39	9.62
Chemical	Ammonia	mg/kg	331	210	2740	42.8	132	74.0	35.2
Chemical	Nitrata ion	mg/kg	8.4 /	3.57	91.9	5.00	12.4	3.34	3.99
SVOC	Nitrate ION	iiig/kg	< 1.40	< 2490	< 15.0	< 2120	0.787	< 1.50	< 1.29
SVOCs	1 2 4 5-Tetrachlorobenzene	ug/kg ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2 3 4 6-Tetrachlorophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,4,5-Trichlorophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,4,6-Trichlorophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,4-Dichlorophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,4-Dimethylphenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,4-Dinitrophenol	ug/kg	< 953	< 4950		< 4370	< 10500	< 910	< 8680
SVOCs	2,4-Dinitrotoluene	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2,6-Dinitrotoluene	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2-Chloronaphthalene	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	2-Chlorophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	2-Methylnaphthalene	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	2-Methylphenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCS	2-Nitrophonol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	3&4-Methvlnhenol(m&n Cresol)	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	3,3'-Dichlorobenzidine	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	3-Nitroaniline	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4,6-Dinitro-2-methylphenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Bromophenyl phenyl ether	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Chloro-3-methylphenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Chloroaniline	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Chlorophenyl phenyl ether	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Nitroaniline	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	4-Nitrophenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Acenaphthene	ug/kg	< 47.6	126		< 218	< 527	< 45.5	< 434
SVOCS	Acetophenone	ug/kg	< 47.0	< 248		< 2180	< 527	< 45.5	< 434
SVOCs	Anthracene	ug/kg	< 47.6	958		< 2180	< 5270	< 45.5	< 434
SVOCs	Atrazine	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Benz(a)anthracene	ug/kg	< 47.6	12400		< 218	< 527	< 45.5	< 434
SVOCs	Benzaldehyde	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Benzo(a)pyrene	ug/kg	< 47.6	13500		< 218	< 527	< 45.5	< 434
SVOCs	Benzo(b)fluoranthene	ug/kg	19.5	17700		< 218	< 527	< 45.5	< 434
SVOCs	Benzo(g,h,i)perylene	ug/kg	< 47.6	6600		< 218	< 527	< 45.5	< 434
SVOCs	Benzo(k)fluoranthene	ug/kg	< 47.6	6690		< 218	< 527	< 45.5	< 434
SVOCs	Bis(2-chloroethoxy)methane	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Bis(2-chloroethyl)ether	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Bis(2-chlorolsopropyl)ether	ug/kg	< 4/6	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Butyl benzyl obthalate	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	Caprolactam	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Carbazole	ug/kg	< 47.6	166		< 218	< 527	< 45.5	< 434
SVOCs	Chrysene	ug/kg	< 47.6	11800		< 218	< 527	< 45.5	< 434
SVOCs	Dibenz(a,h)anthracene	ug/kg	< 47.6	1640		< 218	< 527	< 45.5	< 434
SVOCs	Dibenzofuran	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Diethyl phthalate	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	Dimethyl phthalate	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	Di-n-butyl phthalate	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCs	Di-n-octyl phthalate	ug/kg	< 47.6	< 248		< 218	< 527	< 45.5	< 434
SVOCS		ug/Kg	< 4/0 27 1	< 2480 20000		< 218U	< 5270		< 4340 < A2A
SVOCs	Fluorene	чб/ ∿б ug/kø	< 47.6	156		< 218	< 527	< 45.5	< 434
SVOCs	Hexachlorobenzene	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Hexachlorobutadiene	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Hexachlorocyclopentadiene	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Hexachloroethane	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Indeno(1,2,3-cd)pyrene	ug/kg	< 47.6	8830		< 218	< 527	< 45.5	< 434
SVOCs	Isophorone	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Naphthalene	ug/kg	< 47.6	240		< 218	< 527	< 45.5	< 434
SVOCS	INITRODENZENE	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Pentachlorophenol	ug/kg Ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340 < 4340
SVOCs	Phenanthrene	ug/kg	< 47.6	1800		< 218	< 527	< 45.5	< 434
SVOCs	Phenol	ug/kg	< 476	< 2480		< 2180	< 5270	< 455	< 4340
SVOCs	Pyrene	ug/kg	22.4	13300		< 218	< 527	< 45.5	< 434
VOCs	(1-Methylethyl)-Benzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,1,1-Trichloroethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,1,2,2-Tetrachloroethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,1,2-Trichlor-1,2,2-trifluoroethane	ug/kg	< 5.37	< 3.95	< 73.4	< 4.76	< 5.42	< 3.83	< 4.42
VOCs	1,1,2-Trichloroethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCS	1,1-Dichloroothane	ug/kg	< 1.07	< 0.789	< 14./	< 0.953	< 1.08	< 0.766	< 0.885
VOC	1,1-Dichlorobenzene	ug/Kg	< 1.07	< 0.789	< 14./	< 0.953	< 1.08	< 0.766	
VOCs	1.2.4-Trichlorobenzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.00	< 0.766	< 0.885
VOCs	1,2-Dibromo-3-chloropropane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,2-Dibromoethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,2-Dichlorobenzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,2-Dichloroethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885

Attachment C

Sanitary Lagoon Analytical Results

Westinghouse Columbia Fuel Fabrication Facility, Hopkins, SC

		Sample	SLS-1	SLS-21	SLS-25	SLS-3	SLS-5	SLS-B1	SLS-B2
		Date	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021
Group	Analyte	Units							
VOCs	1,2-Dichloropropane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,3-Dichlorobenzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,4-Dichlorobenzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	1,4-Dioxane	ug/kg	< 53.7	< 39.5	< 734	< 47.6	< 54.2	< 38.3	< 44.2
VOCs	2-Butanone	ug/kg	9.06	17.9	1330	4.45	14.7	5.84	4.54
VOCs	2-Hexanone	ug/kg	< 5.37	< 3.95	< 73.4	< 4.76	< 5.42	< 3.83	< 4.42
VOCs	4-Methyl-2-pentanone	ug/kg	< 5.37	< 3.95	< 73.4	< 4.76	< 5.42	< 3.83	< 4.42
VOCs	Acetone	ug/kg	86.4	112	5890	71.1	84.3	46.3	67.5
VOCs	Benzene	ug/kg	< 1.07	< 0.789	9.39	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Bromochloromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Bromodichloromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Bromoform	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Bromomethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Carbon disulfide	ug/kg	2.36	4.20	457	< 4.76	3.46	< 3.83	2.62
VOCs	Carbon tetrachloride	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Chlorobenzene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Chloroethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Chloroform	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Chloromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	cis-1,2-Dichloroethene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	cis-1,3-Dichloropropene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Cyclohexane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Dibromochloromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Dichlorodifluoromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Ethylbenzene	ug/kg	< 1.07	< 0.789	5.72	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Methyl acetate	ug/kg	< 5.37	< 3.95	< 73.4	< 4.76	< 5.42	< 3.83	< 4.42
VOCs	Methyl tert-butyl ether	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Methylcyclohexane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Methylene chloride	ug/kg	< 5.37	< 3.95	< 73.4	< 4.76	< 5.42	< 3.83	< 4.42
VOCs	o-Xylene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Styrene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Tetrachloroethene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Toluene	ug/kg	0.677	< 0.789	10.4	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	trans-1,2-Dichloroethene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	trans-1,3-Dichloropropene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Trichloroethene	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Trichlorofluoromethane	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Vinyl chloride	ug/kg	< 1.07	< 0.789	< 14.7	< 0.953	< 1.08	< 0.766	< 0.885
VOCs	Xylenes, m- & p-	ug/kg	< 2.15	< 1.58	23.8	< 1.91	< 2.17	< 1.53	< 1.77

		Sample	SLS-13	SLS-17	SLS-19	SLS-7	SLS-9	SLS-B3
		Date	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021
Group	Analyte	Units						
Radiological	Technetium-99	pCi/g	7.88	1.77	10.2	2.75	23.6	12.9
Radiological	Uranium-233/234	pCi/g	1840	2580	2180	1390	1660	2180
Radiological	Uranium-235/236	pCi/g	91.9	141	121	62.1	76.5	119
Radiological	Uranium-238	pCi/g	435	467	538	250	391	511
Chemical	Ammonia	mg/kg	2610	3640	3240	2480	1900	3740
Chemical	Fluoride	mg/kg	98.8	114	93.0	77.5	91.3	93.9
Chemical	Nitrate ion	mg/kg	7.04	13.9	6.39	9.97	3.73	6.17
SVOCs	1.1'-Biphenyl	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	1.2.4.5-Tetrachlorobenzene	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.3.4.6-Tetrachlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.4.5-Trichlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.4.6-Trichlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.4-Dichlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.4-Dimethylphenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.4-Dinitrophenol	ug/kg	< 9100	< 18800	< 43200	< 13100	< 5410	
SVOCs	2.4-Dinitrotoluene	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2.6-Dinitrotoluene	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2-Chloronanhthalene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	2-Chlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2-Methylnanhthalene	110/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	2-Methylnbenol	110/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2-Nitroaniline	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	2-Nitronhenol	110/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	3&4-Methylphenol(m&n Cresol)	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	3 3'-Dichlorobenzidine	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	3-Nitroaniline	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	4 6-Dinitro-2-methylphenol		< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	4,0-Dimitio-2-methyphenol	ug/kg ug/kg	< 4550	< 9400	< 21000	< 6560	< 2700	
SVOCs	4-Chloro-3-methylphenol		< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	4-Chloroaniline	ug/kg ug/kg	< 4550	< 9400	< 21000	< 6560	< 2700	
SVOCs	4-Chlorophenyl phenyl ether		< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	4-Nitroaniline	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	4-Nitronhenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Acenantthene	ug/kg	< 455	< 9400	< 2160	< 656	< 2700	
SVOCs	Acenaphthylene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Acetophenone		< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Anthracene	ug/kg	< 455	< 940	< 2160	< 656	< 2700	
SVOCs	Atrazine	ug/kg	< 4550	< 9400	< 21600	< 6560	< 270	
SVOCs	Benz(a)anthracene	ug/kg	< 455	< 9400	< 2160	< 656	< 2700	
SVOCs	Benzaldebyde	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Benzo(a)nyrene	ug/kg	< 455	< 940	< 2160	< 656	< 2700	
SVOCs	Benzo(b)fluoranthene	110/kg	< 455	< 940	< 2160	< 656	89.2	
SVOCs	Benzo(g h i)pervlene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Benzo(k)fluoranthene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Bis(2-chloroethoxy)methane	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Bis(2-chloroethyl)ether	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Bis(2-chloroisopropyl)ether	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Bis(2-ethylbexyl)phthalate	110/kg	218	< 940	< 2160	367	608	
SVOCs	Butyl benzyl phthalate	ug/kg	< 155	< 940	< 2160	< 656	< 270	
SVOCs	Caprolactam	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Carbazole	ug/kg	< 155	< 940	< 2160	< 656	< 2700	
SVOCs	Chrysene	ug/kg ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Dibenz(a b)anthracene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Dibenzofuran	ug/kg	< 4550	< 9400	< 21600	< 6560	< 270	
SVOCs	Diethyl nhthalate	11g/kg	< 155	< 9/10	< 2160	< 656	< 2700	
SVOC	Dimethyl phthalate	ug/kg	~ 455	~ 940	< 2100	< 050 < 656	< 270	
SVOC	Di-n-hutyl nhthalate	ug/kg	< 400 2 / 55	< 940 < 010	< 2100	< 656	< 270	
SVOC	Di n octul obtestato	ug/kg	> 400	< 940	< 2100		< 270	
SVOC		ug/kg	435 45 45	< 94U	< 21600	< CECO	< 2700	
SVOC	Eluoranthono	ug/Kg	< 400U	< 9400 < 040	< 21CO		~ 2700	
SVOC	Fluoropo	ug/kg	< 455	< 940	< 2100	< 050	230	
SVOC-		ug/kg	< 455	< 940	< 2100		< 270	
SVOC		ug/Kg	< 455U	< 9400	< 21600	< 050U	< 2700	
SVOC-		ug/kg	< 455U	< 9400	< 21000		< 2700	
SVOC	nexactionocyclopentadiene	ug/kg	< 455U	< 9400	< 21000		< 2700	

SVOCS	Hexachloroethane	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Indeno(1,2,3-cd)pyrene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Isophorone	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Naphthalene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Nitrobenzene	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	N-Nitrosodi-n-propylamine	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Pentachlorophenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Phenanthrene	ug/kg	< 455	< 940	< 2160	< 656	< 270	
SVOCs	Phenol	ug/kg	< 4550	< 9400	< 21600	< 6560	< 2700	
SVOCs	Pyrene	ug/kg	< 455	< 940	< 2160	< 656	211	
VOCs	(1-Methylethyl)-Benzene	ug/kg	< 18.9	< 41.5	9.81	< 24.0	8.10	7.92
VOCs	1,1,1-Trichloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,1,2,2-Tetrachloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	9.58
VOCs	1,1,2-Trichlor-1,2,2-trifluoroethane	ug/kg	< 94.6	< 208	< 87.6	< 120	< 55.4	< 92.1
VOCs	1,1,2-Trichloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4

		Sample	SLS-13	SLS-17	SLS-19	SLS-7	SLS-9	SLS-B3
		Date	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021
Group	Analyte	Units						
VOCs	1,1-Dichloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,1-Dichloroethene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2,3-Trichlorobenzene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2,4-Trichlorobenzene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2-Dibromo-3-chloropropane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2-Dibromoethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2-Dichlorobenzene	ug/kg	< 18.9	< 41.5	27.5	< 24.0	< 11.1	22.5
VOCs	1,2-Dichloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,2-Dichloropropane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,3-Dichlorobenzene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	1,4-Dichlorobenzene	ug/kg	100	< 41.5	87.7	< 24.0	< 11.1	77.9
VOCs	1,4-Dioxane	ug/kg	< 946	< 2080	< 876	< 1200	< 554	< 921
VOCs	2-Butanone	ug/kg	1020	421	1270	213	1060	1240
VOCs	2-Hexanone	ug/kg	< 94.6	< 208	< 87.6	< 120	< 55.4	< 92.1
VOCs	4-Methyl-2-pentanone	ug/kg	< 94.6	< 208	< 87.6	< 120	< 55.4	< 92.1
VOCs	Acetone	ug/kg	4480	2080	4960	1080	4210	4910
VOCs	Benzene	ug/kg	8.32	< 41.5	17.9	< 24.0	3.88	14.4
VOCs	Bromochloromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Bromodichloromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Bromoform	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Bromomethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Carbon disulfide	ug/kg	225	94.7	316	82.9	256	283
VOCs	Carbon tetrachloride	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Chlorobenzene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Chloroethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Chloroform	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Chloromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	cis-1,2-Dichloroethene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	cis-1,3-Dichloropropene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Cyclohexane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Dibromochloromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Dichlorodifluoromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Ethylbenzene	ug/kg	13.6	< 41.5	14.4	< 24.0	5.32	11.8
VOCs	Methyl acetate	ug/kg	< 94.6	< 208	< 87.6	< 120	< 55.4	< 92.1
VOCs	Methyl tert-butyl ether	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Methylcyclohexane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Methylene chloride	ug/kg	37.3	< 208	< 87.6	< 120	< 55.4	< 92.1
VOCs	o-Xylene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Styrene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Tetrachloroethene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Toluene	ug/kg	7.19	< 41.5	11.7	< 24.0	6.76	9.77
VOCs	trans-1,2-Dichloroethene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	trans-1,3-Dichloropropene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Trichloroethene	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Trichlorofluoromethane	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Vinyl chloride	ug/kg	< 18.9	< 41.5	< 17.5	< 24.0	< 11.1	< 18.4
VOCs	Xylenes, m- & p-	ug/kg	39.2	38.2	62.5	< 47.9	18.4	52.1

Page 5 of 8

		Sample	SLS-1	SLS-21	SLS-25	SLS-5	SLS-B1	SLS-B2
		Date	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021	6/17/2021
Group	Analyte	Units						
TCLP Metals	Arsenic	mg/L	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300
TCLP Metals	Barium	mg/L	0.103	0.130	0.123	0.132	0.108	0.103
TCLP Metals	Cadmium	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP Metals	Chromium	mg/L	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
TCLP Metals	Lead	mg/L	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200
TCLP Metals	Mercury	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200
TCLP Metals	Selenium	mg/L	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300	< 0.300
TCLP Metals	Silver	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	1,4-Dichlorobenzene	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	2,4,5-Trichlorophenol	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	2,4,6-Trichlorophenol	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	2,4-Dinitrotoluene	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	2-Methylphenol	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	3&4-Methylphenol(m&p Cresol)	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Hexachlorobenzene	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Hexachlorobutadiene	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Hexachloroethane	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Nitrobenzene	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Pentachlorophenol	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP SVOCs	Pyridine	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500	< 0.0500
TCLP VOCs	1,1-Dichloroethene	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	1,2-Dichloroethane	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	1,4-Dichlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	2-Butanone	mg/L	0.0204	0.0294	0.0271	0.0207	0.0242	0.0183
TCLP VOCs	Benzene	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Carbon tetrachloride	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Chlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Chloroform	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Tetrachloroethene	mg/L	< 0.0100	< 0.0100	0.470	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Trichloroethene	mg/L	< 0.0100	< 0.0100	0.104	< 0.0100	< 0.0100	< 0.0100
TCLP VOCs	Vinyl chloride	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100

		Sample	SLS-13
		Date	6/17/2021
Group	Analyte	Units	
TCLP Metals	Arsenic	mg/L	< 0.300
TCLP Metals	Barium	mg/L	0.106
TCLP Metals	Cadmium	mg/L	< 0.0500
TCLP Metals	Chromium	mg/L	< 0.100
TCLP Metals	Lead	mg/L	< 0.200
TCLP Metals	Mercury	mg/L	< 0.00200
TCLP Metals	Selenium	mg/L	< 0.300
TCLP Metals	Silver	mg/L	< 0.0500
TCLP SVOCs	1,4-Dichlorobenzene	mg/L	< 0.0500
TCLP SVOCs	2,4,5-Trichlorophenol	mg/L	< 0.0500
TCLP SVOCs	2,4,6-Trichlorophenol	mg/L	< 0.0500
TCLP SVOCs	2,4-Dinitrotoluene	mg/L	< 0.0500
TCLP SVOCs	2-Methylphenol	mg/L	< 0.0500
TCLP SVOCs	3&4-Methylphenol(m&p Cresol)	mg/L	< 0.0500
TCLP SVOCs	Hexachlorobenzene	mg/L	< 0.0500
TCLP SVOCs	Hexachlorobutadiene	mg/L	< 0.0500
TCLP SVOCs	Hexachloroethane	mg/L	< 0.0500
TCLP SVOCs	Nitrobenzene	mg/L	< 0.0500
TCLP SVOCs	Pentachlorophenol	mg/L	< 0.0500
TCLP SVOCs	Pyridine	mg/L	< 0.0500
TCLP VOCs	1,1-Dichloroethene	mg/L	< 0.0100
TCLP VOCs	1,2-Dichloroethane	mg/L	< 0.0100
TCLP VOCs	1,4-Dichlorobenzene	mg/L	< 0.0100
TCLP VOCs	2-Butanone	mg/L	0.0233
TCLP VOCs	Benzene	mg/L	< 0.0100
TCLP VOCs	Carbon tetrachloride	mg/L	< 0.0100
TCLP VOCs	Chlorobenzene	mg/L	< 0.0100
TCLP VOCs	Chloroform	mg/L	< 0.0100
TCLP VOCs	Tetrachloroethene	mg/L	< 0.0100
TCLP VOCs	Trichloroethene	mg/L	< 0.0100
TCLP VOCs	Vinyl chloride	mg/L	< 0.0100

Page 7 of 8

Attachment C

Sanitary Lagoon Analytical Results Westinghouse Columbia Fuel Fabrication Facility, Hopkins, SC

Notes: Bold concentrations indicate detections

- value is reported as a negative number
- value is below minimum detectable concentration
pCi/g - picocuires per gram
ug/kg - micrograms per kilogram
mg/kg - milligrams per kilogram
SVOCs - semivolatile organic compounds
VOCs - volatile organic compounds
TCLP - Toxic Characteristic Leaching Protocol

Attachment C Sanitary Lagoon Sludge Sampling Results Radionuclide Sum of Fractions

Sampling Event:	Sanitary I	Lagoon Sluc	dge Charact	erization	Total Sam	ple Count:
		Analyte	(pCi/g)		SOF	SOF
	U-234	U-235	U-238	Tc-99	Residiential	Industrial
Minimum Result:	12.6	0.7	3.0	0.0	1.4	0.0
Average Result:	1,136.8	67.4	242.8	7.1	113.6	3.4
Maximum Result:	2,870.0	189.0	703.0	50.2	295.8	9.6

28

ш	Comple ID	Gro	oss Analyte	Activity (pC	i/g)	SOF	SOF
#	Sample ID	U-234	U-235	U-238	Tc-99	Residiential	Industrial
1	SLS-01	99.9	4.5	20.8	2.9	9.9	0.3
2	SLS-02	43.4	2.7	9.4	1.3	4.4	0.1
3	SLS-03	105.0	5.8	24.3	5.6	10.8	0.3
4	SLS-04	48.4	2.6	12.0	2.0	5.0	0.1
5	SLS-05	351.0	17.3	80.3	50.2	37.5	1.0
6	SLS-06	14.7	0.8	3.0	0.0	1.5	0.0
7	SLS-07	1,390.0	62.1	250.0	2.8	132.7	3.4
8	SLS-08	1,880.0	146.0	389.0	4.2	190.9	6.5
9	SLS-09	1,660.0	76.5	391.0	23.6	166.4	4.6
10	SLS-10	12.6	0.7	3.2	2.4	1.4	0.0
11	SLS-11	309.0	15.0	51.2	1.0	29.4	0.8
12	SLS-12	2,210.0	121.0	418.0	3.3	215.2	6.1
13	SLS-13	1,840.0	91.9	435.0	7.9	184.5	5.3
14	SLS-14	2,870.0	189.0	703.0	22.8	295.8	9.6
15	SLS-15	33.4	2.3	6.5	0.2	3.3	0.1
16	SLS-16	192.0	11.1	35.2	1.0	18.7	0.5
17	SLS-17	2,580.0	141.0	467.0	1.8	249.5	7.0
18	SLS-18	2,540.0	147.0	516.0	11.2	251.2	7.4
19	SLS-19	2,180.0	121.0	538.0	10.2	221.8	6.8
20	SLS-20	1,790.0	120.0	350.0	3.0	177.9	5.6
21	SLS-21	299.0	14.1	61.8	11.4	29.8	0.8
22	SLS-22	1,380.0	96.6	295.0	3.0	139.5	4.5
23	SLS-23	1,300.0	107.0	316.0	3.3	136.1	4.9
24	SLS-24	1,940.0	144.0	348.0	1.3	192.2	6.2
25	SLS-25	2,490.0	124.0	546.0	6.6	246.4	7.0
26	SLS-B1	42.5	1.7	8.4	1.2	4.1	0.1
27	SLS-B2	50.0	2.4	9.6	1.4	4.9	0.1
28	SLS-B3	2,180.0	119.0	511.0	12.9	219.7	6.6

%	Moist	ure Correct	ed Activity (pCi/g)	SOF	SOF
Moi stur	U-234	U-235	U-238	Tc-99	Residiential	Industrial
31	68.5	3.1	14.3	2.9	6.8	0.2
24	32.9	2.1	7.1	2.9	3.4	0.1
24	79.5	4.4	18.4	1.3	8.0	0.2
17	40.2	2.2	10.0	5.6	4.4	0.1
37	220.8	10.9	50.5	2.0	22.1	0.6
21	11.6	0.7	2.4	50.2	3.8	0.0
95	69.5	3.1	12.5	0.0	6.6	0.2
94	118.4	9.2	24.5	2.8	12.2	0.4
88	202.5	9.3	47.7	4.2	20.4	0.6
19	10.3	0.6	2.6	23.6	2.3	0.0
73	84.0	4.1	13.9	2.4	8.1	0.2
96	97.2	5.3	18.4	1.0	9.5	0.3
93	134.3	6.7	31.8	3.3	13.6	0.4
89	312.8	20.6	76.6	7.9	32.5	1.1
29	23.8	1.6	4.6	22.8	3.6	0.1
38	120.0	6.9	22.0	0.2	11.7	0.3
97	90.3	4.9	16.3	1.0	8.8	0.2
94	149.9	8.7	30.4	1.8	14.9	0.4
92	165.7	9.2	40.9	11.2	17.4	0.5
95	93.1	6.2	18.2	10.2	9.8	0.3
33	199.1	9.4	41.2	3.0	19.6	0.5
95	71.8	5.0	15.3	11.4	7.8	0.2
93	88.4	7.3	21.5	3.0	9.4	0.3
96	75.7	5.6	13.6	3.3	7.7	0.2
93	181.8	9.1	39.9	1.3	18.0	0.5
27	31.1	1.2	6.1	6.6	3.3	0.1
25	37.7	1.8	7.3	1.2	3.7	0.1
92	167.9	9.2	39.3	1.4	16.9	0.5

Attachment D

Grain Size Analysis for Site Soils

Path: M:\EnvDataViz\Westinghouse\mxd\Ad Hoc 2021\Site Map 04212021v2.mxd

Legend

+	Surficial Aquifer - Upper Zone Monitoring Well
+	Surficial Aquifer - Lower Zone Monitoring Well
•	Black Mingo Aquifer Monitoring Well
L -	Surficial Aquifer Groundwater Screening Location - Upper Zone
L -	Surficial Aquifer Groundwater Screening Location - Upper and Lower Zones
• L -	Surficial Aquifer Groundwater
	Staff Gauge Location
	Ditch
	Culvert
_	Dike Location
-	Mill Creek Flow Direction
	Mill Creek
	Property Line
	SCRDI Bluff Road (Superfund Site)
- 120	Former Oil House #2
—	Top of Bluff
	Inferred Top of Bluff
	Bottom of Bluff
	Inferred Bottom of Bluff
	Secondary Bluff Area
EL I	East Lagoon
NL I	North Lagoon
SL S	South Lagoon
SAN S	Sanitary Lagoon
WL1	West Lagoon I
WL2	West Lagoon II
	Grain size analysis
	0 300 600
	Feet
	1:7,200
FIPS 3900	ction: NAD 1983, South Carolina State Plane,
Datum: No	orth American 1983
A = 4	101 Research Drive
A= (Columbia, SC 29203 T: (803) 254-4400 F: (803) 771-6676
C	Groundwater Screening
and M	onitoring Well Location Map
WESTI	
	HOPKINS, SOUTH CAROLINA

1 5- 2

60595649	CCS	April 2021	FIGURE 1
00000010	000	7.0111 2021	

Report of Analysis

Westinghouse Electric Company 5801 Bluff Rd. Hopkins, SC 29061 Attention: Diana Joyner

Project Name: RI Phase II-Grainsize

Lot Number:**WF23001** Date Completed:06/25/2021

Project Manager: Blaire M. Gagne

Hannah K Lucas

07/08/2021 4:05 PM Approved and released by: Project Manager I: **Hannah K. Lucas**

The electronic signature above is the equivalent of a handwritten signature. This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

Pace Analytical Services, LLC (*formerly Shealy Environmental Services, Inc.*) 106 Vantage Point Drive West Columbia, SC 29172 Tel: 803-791-9700 Fax: 803-791-9111 www.pacelabs.com

Case Narrative Westinghouse Electric Company Lot Number: WF23001

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

Grain Size analysis was subcontracted to Schnabel Engineering. The report is included after the Pace report of analysis.

Sample Summary

Westinghouse Electric Company

Lot Number: WF23001

Project Name: RI Phase II-Grainsize

Project Number:

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	L-28-0-2	Solid	06/21/2021	06/21/2021
002	L-28-2-5	Solid	06/21/2021	06/21/2021
003	L-31-0-3	Solid	06/21/2021	06/21/2021
004	L-31-3-5	Solid	06/21/2021	06/21/2021
005	L-35-0-3	Solid	06/21/2021	06/21/2021
006	L-35-3-5	Solid	06/21/2021	06/21/2021
007	L-42-0-2	Solid	06/21/2021	06/21/2021
008	L-45-0-1	Solid	06/21/2021	06/21/2021
009	L-45-1-2	Solid	06/21/2021	06/21/2021
010	L-45-2-5	Solid	06/21/2021	06/21/2021
011	L-58-0-2	Solid	06/21/2021	06/21/2021
012	L-59-0-2	Solid	06/21/2021	06/21/2021
013	W-101-2	Solid	06/21/2021	06/21/2021

(13 samples)

Detection Summary

Westinghouse Electric Company

Lot Number: WF23001

Project Name: RI Phase II-Grainsize

Project Number:

Sample Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page

(0 detections)

QC Summary

Chain of Custody and Miscellaneous Documents

Pace Analytical "		PACE 106 Vantag Telephone	ANALYT Je Point Dri No. 803-75 www	ICAL SERVICES, we • West Columbia, S0 n-9700 Fax No. 803-7 tipacelabs.com	01-9111 01-9111	_	Number	120132
Creen Wer Thanksure	ĉ	port to Contact	Joyner		Talephone No. / E-mail	Theyburge	t GW	Cuote No.
Address Plut Ry	ů	unpler's Signati	10 K	P. M.H.	Analysis (Attach list it more	spače is neede	ĥ	Z lo 1 aber
CAV HOPKINS STATE ZED	Sole X	inted Name	Z Z	(analysis)	-op			
PROJECT NUTTER RS PARSE IT		2	Thuck	suddeth	mata			WF23001
Project No.	P.O. No.	aysoc 95	Marrix	No of Containers by Presonative Type	A L			BNG
Semple 1D / Description (Contributes for resch sample may be contained on one frie.)	Caleston Coded Date(2) (Mi	Nery)		01 500019 00 5000 00 5000 0000000 00000000	1.29			Remerks / Cooler LD.
2-0-82-7		Ś	×		X			
2-28-2-5		Ś	X		K .		-	
1-31-0-3		ও	×		Ŷ			
7-31-3-5		3	×	1	x			
5-0-32-7		چ	×		×			
1-35-3-5		Ċ	×		×			
1-42-0-2		B	×		X		-	
1-0-57-7		Ъ,	x		X		б	
r-45-1-2		بر ا	×		×		9	
6-45-2-5		3	X		×			
Turn Around Time Required (Prior iab approvil required for is: examined I Bush (Societiv)	r expeditor IAL) Sam	pte Disposal sturn ta Cüent 🗙	Disposal by La	Poseible Hazard Klent/Krath	ar 18 - O Skin kritlant - O Poison	Diffeom	GC Requirement	(Specify)
1. Hawaughed by R. Rullett		Catt 21 24	1714	t. Received by		2	Date	LANS.
2 Aefinquished by		Date	Time	2. Received by			Date	60
3. Reincuished by		Date	Three	3. Received by			Date	90
4. Rakrpushed by		Date 2121	HILL	4. Laboratory received by	n Vereen	IJ	18-18-01	/ hill
Note: All samples are retained unless other arrange	i for four weeks lements are mad	from receipt a.		LAB USE CINLY Received on los (Circle)	res (No) ice Paci R	Receipt Texmo. 2	-1- (a- 0 1	N Z X C Male due
DISTRIBUTION: WHITE & YELLOW-RAILING IN SUCCESSION	y with Sample(s); P#	We-Field/Dilenk	/dap		>		Docim	vari Narabor: ME033N2-01

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

PACE ANALYTICAL SERVICES, LLC

		PAC	E ANALYI	ICAL SERVICES ,	LCC			
Pace Analytical		106 Vart Te le phon	age Point Dri le No. 803-75 www	ve • West Columbia, § 91-9700 Fax No. 803 spacelabs.com	SC 29172 -791-9111		Number	120133
aient intesting house		Heport to Conta	Toyner		Takephone No. (E-mer	utes May house	č (čerh)	Ouote No.
Address 5801 BING RO		Samplar's Sign	anse 10	60.11	Analysis (Attach list # m	ore space is neede	jaj	2 Z S
our Hapkils 32% Za	p Carte 29061	X Runne	000 × 03	AUTA	-2/2			F. P. B. Code
Project Name RI PLASE IF		,	Auch S	A.M.	weyd			
Project No.	P.O. No.	sical qu	Atalitic	No of Coubelies by Preservative Type	11 ×			VVF23001
Stangulo ID / Description (Containes for each sample may be contribution one (na.)	Collection C Deter(s) C	Colection Time	viounity solar ASIAS Andendy	20 9809 20 9809 HCOW 1011 80044 800231(20040	11/7 (10/9)			Piece / Conor
7-0-85-7		3	×		×			
2-0-65-7		৬	×		×			
Z-0-101-11		Ğ	×		×			
							_	
Turn Around Time Required (Prior lab approved required K Standord 🗆 Rush (Seeclint)	tur expedited IAL)	Sample Disposal	X. Disposal by Lat	Possible Hazard Identifica Non-Hazard II Hamma	efon ble EL Skin Imitant EL Poé	son 🖵 Unknown	QC Roquinemer	its (Specity)
1. Retinquespect by K Suffert		2 12 2	121	1. Received by			Data	jime
2. Reingulahed by		Date	Time	2. Received by			Date	Tune
2. Reibquished by		Date	Time	2. Received by			Date	Jine
4. Haürquished by		Date Original	1 P) CI V	4. Laporatory received by	cleen	ð	Date Co.OFB1	111 11
Noie: All samples are retain unless other arran	ed for four wee	eks from receil nade.	01 01	LAB USE ONLY Received on ine (Cirale)	Yes (No) Ice Pack	Racejat Temp.	21.4 %	Temp Blank 🗆 Y 🖓 🕂
DISTRIBUTION: WHITE & YELLOW-Return to laborat	tory with Semplo(5	1; PINK-Field/Cfer	H CODY				Doc	ment Number MERCEN2-01

PACE ANALYTICAL SERVICES, LLC

Pace Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Pace ENV - WCOL

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: Westinghouse Cooler Inspected by/date: KSC / 06/23/2021 Lot #- WF23001
Means of receipt: Pace /Client UPS 1 FedEx Other:
Yes No I. Were custody seals present on the cooler?
Yes No XNA 2. If custody scals were present, were they intact and unbroken?
pH Strip ID: NA Chlorine Strip ID: NA Tested by: NA
Original temperature upon receipt / Derived (Corrected) temperature upon receipt %Solid Snap-Cup (D: NA
21.6 /21.6 °C NA /NA °C NA /NA °C NA /NA °C
Method: Temperature Blank Against Bottles IR Gun ID: 5 IR Gun Correction Factor: 0 °C
Method of coolant: Wet Ice Lice Packs Dry Ice 1 None
Yes No No NA If temperature of any cooler exceeded 6.0°C, was Project Manager Notified?
PM was Notified by: phone (email / face-to-face (circle one).
Yes No VINA 4. Is the connercial counter's packing slip attached to this form?
Very very Very server by the server of the s
V res No 6. Were sample IDs listed on the COC?
Ver Z No 2. Wer collection data & time listed on the COCC
Ves V No 9. Was collection date & time listed on the COC?
Ves No 10 Did all container label information (ID, data, time) some with the COCC
Ves No II. Way tasts to be parformed listed on the COC?
Yes No 12. Did all samples arrive in the proper containers for each test and/or in good condition
(unbroken, has on, etc.)?
Yes No 13. Was adequate sample volume available?
Yes No 14. Were all samples received within ½ the holding time or 48 hours, whichever comes first?
[Yes IVI No 15. Were any samples containers missing/excess (circle one) samples Not listed on COC?
Yes No VNA 16. For VOA and RSK-175 samples, were bubbles present >"pca-size" (¼"or 6mm in diameter)
Vac No. ZNA 17 Wars all DRO/matala/autoicat semalar associated at a 17.6 dam
Ves No VNA 18. Were all evanide samples received at a pH of < 27
1.00 1.00
Yes Mo Vina residual chlorine?
20. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc.)
Correctly transcribed from the COC into the comment section in LIMS?
Yes No 21. Was the quote number listed on the container label? If yes, Quote #
Sample Preservation (Must be completed for any sample(s) incorrectly preserved or with headspace.)
Sample(s) NA were received incorrectly preserved and were adjusted accordingly.
in sample receiving with NA mL of circle one; H2SO4, HNO3, HCI, NaOH using SR # NA
Time of preservation NA . If more than one preservative is needed, please note in the comments below.
Samplade) NA
were received with bubbles >6 mm in diameter.
adjusted accordingly in sample received with TRC > 0.5 mg/L (If #19 is <i>no</i>) and were
insponde accordingly in sample receiving with sourant thiosunate (Na ₂ S ₂ O ₃) with Sheaty ID: Ma
SR barcode labels applied by: KSC Date: 06/23/2021
Comments:

Pace Analytical Services, LLC *(formerly Shealy Environmental Services, Inc.)* 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelabs.com

TRANSMITTAL								
TO:	Blaire Gagne		DATE: 7/8/21					
COMPANY:	Pace Analytical		SUBJECT:	Lab Results				
ADDRESS:	106 Vantage Point Drive West Columbia, South Carolina 29169		PROJECT NAME/NO.:	Pace Analytical – Westinghouse Schnabel Reference Number: 08190058.00.497-509 Lot No. WF23001				
FROM:	Stephen Hahn		CC:					
COPIES	DATE	NO.		DESCRIPTION	l			
1		13	Gradatio	١				
AS REQUESTED FOR APPROVAL			D PLEAS	SE REPLY				
Attached, please	find our lab resul	ts for sample(s) for Lot	no. WF23001.					

Please advise if you have any questions.

		SIGNED:				
			Stephen Hahn			
SENT VIA:	First Class Mail	Overnight Service	🛛 Email	Other		

